
Review on Weed Research with Special Reference to Bangladesh and Malaysia

S. M. Rezaul Karim
Faculty of Agro Based Industry

Universiti Malaysia Kelantan

Review on Weed Research with Special Reference to Bangladesh and Malaysia

Compiled and Edited by
S. M. Rezaul Karim

S. M. Rezaul Karim, PhD Professor Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Locked Bag 100, 17600 Jeli, Kelantan.

Published by

UMK Library Universiti Malaysia Kelantan http://www.umk.edu.my

First edition: 2012 © UMK Library, Universiti Malaysia Kelantan

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or translated in any forms, without prior written permission of the publisher.

Compiled and Edited by

S. M. Rezaul Karim, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Locked Bag-100, 17600 Jeli, Kelantan

Review on Weed Research with special reference to Bangladesh and Malaysia/S.M. Rezaul Karim

Includes Keyword index

ISBN 978-967-5782-41-1

Pesign, typesetting and print managed by
Rimbunan Ilmu Sdn.Bhd.
No. 92-G, 92-1, 92-2, Blok 2,
Wisma Salleh Saidin,
Jalan Dwi Tasik, Dataran Dwi Tasik,
Bandar Sri Permaisuri, 56000 Kuala Lumpur.

PREFACE

Weeds are major pests of crops causing considerable yield loss everywhere. Bangladesh and Malaysia are under tropical regions having the warm and humid climatic conditions, which are favourable for exuberant growth of numerous weeds in the crop fields. Therefore, weeds are the major crop constraints in these countries. To combat these yield constraints a good number of research have been done in the countries. An attempt has been taken to review the research findings on weeds and weed control especially in Bangladesh and Malaysia. The information have been collected from different sources, edited critically and then compiled properly. Research findings (abstracts) on different aspects of weed management in various crops e.g. rice, wheat, jute, mesta, cotton, sugarcane, maize, mungbean, chickpea, mustard, soybean, seasame, potato, tomato, onion, chilli etc. since 1946 especially in Bangladesh have been presented here. Findings in the form of M.S/M.Sc. thesis, journal articles, conference proceedings, news paper articles, annual reports etc. have been included. A keyword index (keyword followed by abstract number) has been added at the end of the book, which will be helpful for the readers to findout the appropriate abstract for use. The book will be useful for all scientists, academicians, post-graduate students, extension workers, policy makes etc. who are interested in weeds and weed management.

> S. M. Rezaul Karim 06 February 2012

SYMBOLS AND ABBREVIATIONS USED

Symbol/ Abbreviation	Explanation
@	At the rate of
2,4-D	2, 4-dichloro phenolic acetic acid
a.i.	Active ingredient
AEZ	Agro Ecological Zone
BARI	Bangladesh Agricultural Research Institute
BAU	Bangladesh Agricultural University
BINA	Bangladesh Institute of Nuclear Agriculture
BL	Broad leaf
BRRI	Bangladesh Rice Research Institute
CGR	Crop Growth Rate
CHT	Chinese Hand Tractor
CSWC	Comprehensive Study on Weed Control
DAP	Days After Planting
DAS	Days After Sowing
DAT	Days After Transplant
DSR	Direct-seeded Rice
DWR	Deep Water Rice
EC	Emulsifiable Concentrate
EPAU	East Pakistan Agricultural University
EPSP	5-enolpyruvylshikimate 3-phosphate synthase gene
G or GR	Grannular
g/l	Gram per litre
GC	Gas Chromatography

Symbol/ Abbreviation	Explanation
GGT	Gamma glutamyl transpeptidase
GR	Growth Rate
HW	Hand weeding
IRRI	International Rice Research Institute
JRW	Japanese Rice Weeder
Kg	Kilogram
L/ha	Litre per hectare
LAI	Leaf Area Index
LIV	Low Improved Variety
MARDI	Malaysian Agricultural Research and Development Institute
MP	Muriate of Potash
MV	Modern Variety
NAR	Net Assimilation Rate
NPK	Nitrogen Phosphorus and Potash
OBFP	Old Brahmaputra Flood Plain
RCBD	Randomized Complete Block Design
RM	Ringgit Malaysia
TDM	Total Dry Matter
TPR	Transplanted Rice
TSP	Triple Super Phosphate
WAE	Week After Emergence
WCE	Weed Control Efficiency
YBJFP	Young Brahmaputra and Jamuna Flood Plain

TABLE OF CONTENTS

CHAPTER I WEED RESEARCH IN BANGLADESH

001.	Rice	1
002.	Jute	155
003.	Mesta	177
004.	Wheat	178
005.	Tea	208
006.	Mungbean	214
007.	Maize	224
008.	Lentil	232
009.	Groundnut	237
010.	Mustard	242
011.	Sugarcane	250
012.	Sesame	256
013.	Khesari	260
014.	Potato	261
015.	Chickpea	262
016.	Millets	264
017.	Tomato	265
018.	Pigeon pea	267
019.	Soybean	267
014.	Onion	268
020.	Barley	268
021.	Tobacco	269
022.	Chilli	269
023.	Miscellaneous	
	i. Weed problem of different crops	271
	ii. Effects of seed age and sowing depth	273
	iii. Crop losses due to weed	273
	iv. Striga problems and control measures	274
	v. Soil seed banks	274
	vi. Water hyacinth for biogas production	276
	vii. Development of weeder	276
	viii. Efficiency of weeder	277
	ix. Weed extract for insect control	281

x. Water hyacinth as compost	282				
xi. Review on weed research	282				
xii. Weed survey	283				
xiii. Seaweeds as poultry feeds	284				
xiv. Intra and interspecific competition in fathen					
xv. Water quality and duckweed	285				
xvi. Weeds of forest species	285				
xvii. Removal of herbicide from water system					
				xxi. Mycorhhizal association in weeds	291
				xxii.lnvasive alien weed species	292
				xxiii.Allelopathic potential of rice	299
CHAPTER II WEED RESEARCH IN MALAYSIA					
004.5%	303				
024. Effect of salinity on weeds					
025. Effects of saline water for weed control					
026. Invasive weed species in Malaysia					
027. Herbicide resistance in weeds					
028. Risk assessment of herbicides					
029. Effects of herbicides on soil microbs					
030. Weed problems and Management	313 314				
031. Efficacy of herbicides					
032. Uptake and translocation of herbicides					
033. Adsorption of herbicides					
034. Herbicide pollution in rice field water					
035. Enhancing the efficacy of herbicides					
36. Weed diversity in rice fields					
037. Emergence of weed seedlings	328				
038. Allelopathy in weeds					
039. Allelopathy in crops					
040. Effects of weeds on rice	332				
041. Effects of sowing depths on weed growth					
042. Effect of N and weed density on rice					
043. Effects of flooding on weed growth					
044. Effect of seeding methods and seeding rate					
045. Botanicals for weed control	336 338				
046. Weeds in turfarass	339				

	047. Weed control in turfgrass	340
	048. Biology of weeds	342
	049. Morphology of weeds	343
	050. Weeds as alternative hosts of pests	347
	051. Weed suppressive ability of rice	348
	052. Weed seed bank in soil	348
	053. Impacts of weedy rice control on rice	350
	054. Control of weedy rice	351
	055. Genetic structure of red rice	352
	056 Weed management in golf courses	353
	057 Weed management in plantation crops	354
CI	HAPTER III WEED NEWS	360
CI	HAPTER IV KEYWORD INDEX	362

CHAPTER 1 WEED RESEARCH IN BANGLADESH

0001: Ishaque, M. 1960. CONTROL OF WILD COCK'S COMB (Celosia argentea) with 2, 4-D IN FIELDS OF GROWING CORN AND AUS PADDY. Pak. J. Biol. Agril. Sci.: 17-20.

An experiment was conducted to find out the effect of different doses of 2, 4-D on rice and corn infested with Cock's comb weed. The results indicated that an application of 2, 4-D @1 lb acid equivalent in 100 gallons of water per acre gives very good control of the the weed in fields of growing corn and aus paddy. Application of this amount of 2, 4-D was not injurious to aus paddy or corn plants and by controlling only the wild Cock's comb weed (using 2, 4-D) the yield of paddy was increased. The herbicide, 2, 4-D at this rate does not kill the grass weeds, which should be removed by hand weeding. But at times when the fields remain wet for long periods and hand weeding is not possible, at least Cock's comb (thanthane) plants can easily be controlled by application of 1 1b 2, 4-D a.e in 100 gallons of water per acre, whereby the growing paddy or corn plants can be freed from competition of this kind of fast growing and, therefore, suffocation weeds.

0002: Alim, A.; Zaman, S. M. H.; Sen, J. L; Ullah, M. T. and Choudhury, M. A. 1962. WEEDING VS. NO WEEDING. REVIEW OF HALF A CENTURY OF RICE RESEARCH IN EAST-PAKISTAN. Agril. Expt. Stat., E. Pak., Tejgaon, Dacca. pp. 22-23.

To determine economical practice of weeding and raking an experiment