Digital Special Collection Portal

Characterization of In-Situ Copper alloy reinforced by Graphene via powder metallurgy technique


Citation

Mohammad, Mushriha (2018) Characterization of In-Situ Copper alloy reinforced by Graphene via powder metallurgy technique. Final Year Project thesis, Universiti Malaysia Kelantan. (Submitted)

Abstract

In this study, the effect of milling speed and compaction pressure on the densification and morphology of CuZn-Gr composite was evaluated. The composite was prepared by using powder metallurgy technique. The effect of the microstructural and compaction were determined based on different milling speed in thus research. The different milling speeds that involved were 175 rpm, 200 rpm, 225 rpm, and 250 rpm. Meanwhile, the different compaction pressures that used in this study were 127.53, 250, 374.67, and 500 MPa. The properties of the milled powder gave the result to green density and densification parameter. The peak XRD of Cu and Zn broadened as milling time increased. The milled powder at 250 rpm has lowest crystallite size and highest internal strain. As the milling speed is increase, the pattern of powder mixture diminished and become smaller due to the well homogenizing powders during milling. Besides, after compaction, 200 rpm and 250 rpm have optimum green density and densification parameter with increasing compaction pressure.

Download File / URL

Full text not available from this repository.

Additional Metadata

Item Type: Undergraduate Final Project Report
Collection Type: Final Year Project
Date: 2018
Call Number: SEB 2018 023
Supervisor: Dr. Mohamad Najmi bin Masri
Programme: Materials Technology
Institution: Universiti Malaysia Kelantan
Faculty/Centre/Office: Faculty of Bioengineering and Technology
URI: http://discol.umk.edu.my/id/eprint/5026
Statistic Details: View Download Statistic

Edit Record (Admin Only)

View Item View Item

The Office of Library and Knowledge Management, Universiti Malaysia Kelantan, 16300 Bachok, Kelantan.
Digital Special Collection (UMK Repository) supports OAI 2.0 with a base URL of http://discol.umk.edu.my/cgi/oai2