

THE OPTIMIZATION OF PLANTING MEDIA ENRICHED WITH BIOCHAR & BLACK SOLDIER FLY LARVAE (BSFL) FRASS

By Sivaletchumy A/P Krishnan

A report submitted in fulfillment of the requirements for the degree of Bachelor of Applied Science (Food Security) with Honours

> Faculty of Agro Based Industry Universiti Malaysia Kelantan

> > 2022

DECLARATION

Except for quotations and summaries that have been properly acknowledged, I declare that the work in this thesis is all mine. The thesis has not been accepted for any degree and is not being submitted for any other degree at the same time.

(Signature)

Student's Name: Sivaletchumy A/P Krishnan Student ID: F18A0230 Date: 24.02.2022

Verified by:

(Supervisor Signature)

(Super isor Signature)

Supervisor's Name: Encik Mohd bin Mahmud @ Mansor

Date: 24.02.2022

ACKNOWLEDGEMENT

Without the help of numerous people, this endeavor would not have been feasible. To begin, I'd want to express my gratitude to University Malaysia Kelantan, Jeli, for providing me with the opportunity to conduct my research in a calm and timely manner.

In addition, I'd want to express my gratitude to Encik Mohd bin Mahmud @ Mansor, my supervisor, and the lectures at Universiti Malaysia Kelantan for allowing me to work under their supervision. All of them have provided me with constructive criticism, support, direction, and helpful suggestions in order for me to accomplish this project. This thesis would not have been the same if it hadn't been for their continual interest and support.

My friends should also be thanked for their moral support and care. My heartfelt gratitude also goes out to everyone who have aided me in various ways, whether directly or indirectly, in the accomplishment of my project. Last but not least, I want to express my gratitude to my family for their unwavering help and encouragement.

The Optimization of Planting Media Enriched with Biochar & Black Soldier Fly

Larvae (BSFL) Frass

ABSTRACT

In Malaysia, the organic food business is confronting many issues. The demand for organic food is increasing but the supply of organic food in the area is not keeping up. As a result, Malaysia continues to rely largely on imported organic food. Over fertilisation or lack of fertiliser are also one of the challenges that is faced by our organic farmer. In order to solve all these problems, planting media enriched with biochar and BSFL would be the best solution. The aim of this study was to identify the effects of different ratios of planting media enriched with biochar and Black soldier fly larvae (BSFL) frass on jimao choy. The growth parameters, pH and yield of the plants were observed in this research. There are seven treatments with three replications for each. Biochar and BSFL frass are used as treatment with different ratio. This study was used a completely randomized design (CRD) experimental design method. Besides, the NPK content in the biochar and frass also have been identified. In addition, ANOVA and Tukey's Honest Significant Difference test are used to test the hypotheses of this research. From the results obtained, it shows that planting media enriched with biochar and BSFL with the ratio 0: 1 (T₁) and 2:1 (T₆) has a good plant development rate compared to other treatments in many things. Results show that frass has high nutrient content compared to biochar. This study employs organic agricultural techniques, which limit the use of chemical compounds such as herbicides, insecticides, and chemical fertilisers.

Keywords: BSFL frass, Biochar, NPK, ANOVA, Tukey's Honest Significant Difference

Pengoptimuman Media Penanaman Diperkaya dengan Biochar & Fras Larva

Lalat Askar Hitam (BSFL)

ABSTRAK

Di Malaysia, perniagaan makanan organik menghadapi banyak isu. Permintaan terhadap makanan organik semakin meningkat tetapi bekalan makanan organik di kawasan itu tidak mencukupi. Akibatnya, Malaysia terus bergantung pada makanan organik yang diimport. Pembajaan berlebihan atau kekurangan baja juga merupakan salah satu cabaran yang dihadapi oleh petani organik kita. Untuk menyelesaikan semua masalah ini, media penanaman yang diperkaya dengan biochar dan fras larva lalat askar hitam akan menjadi penyelesaian terbaik. Matlamat kajian ini adalah untuk mengenal pasti kesan nisbah berbeza media tanaman yang diperkaya dengan biochar dan frass ke atas jimao choy. Parameter pertumbuhan, pH dan hasil tumbuhan diperhatikan dalam penyelidikan ini. Terdapat tujuh rawatan dengan tiga replikasi untuk setiap satu. Biochar dan BSFL frass digunakan sebagai rawatan dengan nisbah yang berbeza. Kajian ini menggunakan kaedah reka bentuk uji kaji rawak lengkap (CRD). Selain itu, kandungan NPK dalam biochar dan frass juga telah dikenal pasti. Selain itu, ujian ANOVA dan Ujian Perbezaan Ketara Jujur Tukey digunakan untuk menguji hipotesis penyelidikan ini. Daripada keputusan yang diperolehi menunjukkan media tanam yang diperkaya dengan biochar dan frass dengan nisbah 0:1 (T₁) dan 2:1 (T₆) mempunyai kadar perkembangan tumbuhan yang baik berbanding rawatan lain dalam banyak perkara. Keputusan menunjukkan bahawa frass mempunyai kandungan nutrien yang tinggi berbanding biochar. Kajian ini menggunakan teknik pertanian organik, yang mengehadkan penggunaan sebatian kimia seperti racun herba, racun serangga, dan baja kimia.

Kata kunci: Fras larva lalat askar hitam, Biochar, NPK, ANOVA, Perbezaan Ketara Jujur Tukey

FYP FIAT

LIST OF ABREVIATIONS

mL	Milliliter
g	Gram
Т	Treatment
NPK	Nitrogen, Phosphorus, Potassium
В	Biochar
F	Frass
BSFL	Black soldier fly larvae
cm	Centimeter
Ca	Calcium
Zn	Zinc
Cu	Copper
EC	Electric conductivity
in	inch
CRD	Completely Randomized Design
ppm	part(s) per million
L	Liter
nm	Nanometer
T_1R_1	Treatment 1, Replication 1

KELANTAN

FYP FIAT

LIST OF TABLES

No.		Pages		
3.1	The various treatments of planting media	16		
3.2	The Completely Randomized Design (CRD)	17		
4.1	The mean height of plants for each treatments in homogeneous	26		
4.2	The fresh and dry weight of plant for each treatments	28		
4.3	The mean fresh weight of plants for each treatments in homogeneous subsets.	29		
4.4	The mean dry weight of plants for each treatments in homogeneous subsets.	30		
4.5	The mean number of leaves of plants for each treatments in homogeneous subsets.	32		
4.6	The number of leaves of plant for each treatments	33		
4.7	The mean of pH of plants for each treatments in homogeneous subsets.	35		
4.8	The mean of nitrogen content of plants for each treatments in homogeneous subsets.	38		
4.9	The mean of phosphorus content of plants for each treatments in homogeneous subsets. 39			
4.10	The mean of potassium content of plants for each treatments in homogeneous subsets. 40			
4.11	Tukey HSD test of descriptive	62		
4.12	Tukey HSD test of multiple comparisons for height 65			
4.13	Tukey HSD test of multiple comparisons for fresh weight	69		
4.14	Tukey HSD test of multiple comparisons for dry weight	72		
4.15	Tukey HSD test of multiple comparisons for number of leaves	75		

Tukey HSD test of multiple comparisons for pH	79
Tukey HSD test of multiple comparisons for nitrogen	82
Tukey HSD test of multiple comparisons for phosphorus	87
Tukey HSD test of multiple comparisons for potassium	93
ANOVA test results for height of plant	98
ANOVA test results for fresh weight of plant	98
ANOVA test results for dry weight of plant	98
ANOVA test results for number of leaves of plant	99
ANOVA test results for pH of plant	99
ANOVA test results for nitrogen content in soil sample	99
ANOVA test results for phosphorus content in soil sample	100
ANOVA test results for potassium content in soil sample	100
Table 4.28: Average plant growth in the interval of 2 days	100
	Tukey HSD test of multiple comparisons for pHTukey HSD test of multiple comparisons for nitrogenTukey HSD test of multiple comparisons for phosphorusTukey HSD test of multiple comparisons for potassiumANOVA test results for height of plantANOVA test results for fresh weight of plantANOVA test results for dry weight of plantANOVA test results for number of leaves of plantANOVA test results for pH of plantANOVA test results for pH of plantANOVA test results for phosphorus content in soil sampleANOVA test results for phosphorus content in soil sampleANOVA test results for potassium content in soil sample

UNIVERSITI

MALAYSIA KELANTAN

FYP FIAT

LIST OF FIGURES

No.		Pages
4.1	The mean height of plants for each treatments.	26
4.2	The mean fresh weight of plants for each treatments.	29
4.3	The mean dry weight of plants for each treatments.	30
4.4	The mean number of leaves of plants for each treatments.	32
4.5	The mean of pH of plants for each treatments.	35
4.6	The mean of nitrogen content of plants for each treatments	38
4.7	The mean of phosphorus content of plants for each treatments.	39
4.8	The mean of potassium content of plants for each treatments.	40
4.9	Block of pressed cocopeat was immersed in water	53
4.10	Process of drying coco peat	53
4.11	Seeds germinated after 4 days	54
4.12	Weighing biochar and frass	54
4.13	Weighing coco peat	55
4.14	Plants after transfer into polybag	55
4.15	Plants on week 1	56
4.16	Checking pH of the soil	56
4.17	Plants on week 2	57
4.18	Plants on week 3 (harvest stage)	57
4.19	Setting up plants before checking dry weight using oven	58
4.20	Plant after dried	58
4.21	Weighing sample for ashing	59

4.22	Samp <mark>les in furnac</mark> e (ashing)	59
4.23	Kjeldahl method (digestion)	60
4.24	Kjeldahl method (distillation)	60
4.25	Preparation of base for titration (Kjeldahl method)	61
4.26	Colour development method	61
4.27	Process of identifying potassium content using Horiba LAOUAtwin	62

TABLE OF CONTENTS

	PAGES
DECLARATION	ii
ACKNOWLEDGEMNET	iii
ABSTRACT	iv
LIST OF ABREVIATIONS	v
LIST OF TABLES	vii
LIST OF FIGURES	ix
TABLE OF CONTENTS	xi
CHAPTER 1	1
INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	4
1.3 Objectives	5
1.4 Hypothesis Statement	6
1.5 Scope of the Study	6
1.6 Significances of Research	7
CHAPTER 2	8
LITERATURE REVIEW	8
2.1 Organic Agriculture	8

2.2 Black Soldier Fly Larvae (BSFL)	9
2.3 Biochar	10
2.4 Cocopeat	12
CHAPTER 3	14
METHODOLOGY	14
3.1 Material and Apparatus	14
3.1.1 Material	14
3.1.2 Apparatus	14
3.2 Method	15
3.2.1 Preparation of germination bed	15
3.2.2 Preparation of planting media	15
3.2.3 Preparation of sample	17
3.2.4 Parameters tested	18
3.3 Laboratory Analysis Method	19
3.3.1 NPK analysing in soil sample	19
3.3.2 Method analysing nitrogen content in soil	19
3.3.3 Preparation of Plant Tissues for Analysis of Nutrients (P & K)	21
3.3.3.1 Extraction	21
3.3.4 Method analysing phosphorus content in soil	22
3 3 4 1 Dilute Double Acid. Mehlich 1 Method (Mehlich, 1953)	22

3.3.4.2 Colour Development 22
3.3.5 Method for analysing potassium content in soil 23
3.4 Statistical Analysis 23
3.4.1 Anova & Tukey's Honest Significant Difference test 23
CHAPTER 4 25
RESULTS AND DISCUSSION 25
4.1 Results 25
4.1.1 Plant Height 25
4.1.2 Plant Weight 27
4.1.3 Number of Leaves 31
4.1.4 Planting Media pH 34
4.1.5 NPK Content in Each Treatment 36
4.2 Discussion 42
CHAPTER 5 45
CONCLUSION AND RECOMMENDATION 45
5.1 Conclusion 45
5.2 Recommendations 46
REFERENCES 47
APPENDICES 53

CHAPTER 1

INTRODUCTION

1.1 Research Background

Agriculture has always been and will continue to be one of the most significant jobs because it is responsible for feeding and sustaining the world's population. Growing consumer awareness about concerns like food quality, environmental safety, and soil conservation has resulted in a significant growth in the implementation of sustainable agriculture practices in recent years. Sustainable agriculture has been defined as a collection of methods that conserve resources and the environment without jeopardising human needs, and one of its primary support has been the use of organic fertilisers such as biomass and animal manure (Tilman et al., 2002). Animal manure and biomass is a beneficial soil fertiliser because it contains a high concentration of macronutrients and micronutrients for crop growth and is a low-cost, ecologically acceptable alternative to mineral fertilisers.

Nowadays, agriculture activity has a lot of changes like planting crops using polybags, aquaculture, hydroponics, and many more. Since there is a lack of land for agriculture activity, geographical conditions such as hills and mountains, soil degradation and also soil infertility, we are adapting to modern agriculture. Instead of using soil, coco peat is used as planting media which is mixed with fertilisers. In the worldwide scenario, rising consumer awareness has boosted the demand for organic products. The organic supply, on the other hand, hasn't been able to keep up with demand. As a result, farmers are being pushed to switch to organic farming. Cropland nutrient management is a critical component of agricultural success. Organic fertilisers, such as the black soldier larvae fly, have therefore been a benefit to organic agriculture.

Coco peat has lately developed as a viable alternative for non-terrestrial plants, particularly in city settings where space constraints force people to look for other options (Siraj, 2018). The fibres that surround the coconut kernel typically make up one-third of the husk. The remaining two-thirds are high-nutrient-dense dusty contents. According to one article, one kilogram of coco peat can store and hold seven litres of water for several months. The great porosity of the coco peat substratum allows for good air circulation and rapid vegetative proliferation when planted with saplings. It's also high in nutrients including magnesium, nitrogen, phosphorus, potassium, zinc, and other key agricultural elements. Indoor gardeners consider coco peat to be a more natural alternative to soil. Coco peat hydroponic plants grow 50 % quicker than soil plants (Siraj, 2018). Because peat is high in nutrients, it decreases the need for fertilisers, herbicides, and pesticides. Because peat retains water for a long time, it reduces both the volume of water and the amount of labour required to water the plant. Because it is absorptive, it enables for more root aeration. When coco peat is made into pots and pans, it can be used as a plant container as well as a substitute for soil.

Nitrate leaching into coastal environments and rivers reduces the ability of common synthetic fertilisers to raise nitrate levels, causing eutrophication and polluting groundwater. Synthetic fertiliser use has also been linked to higher nitrous oxide emissions. A unique option is to combine biochar and BSFL frass as an organic fertiliser.

Pyrolysis, a regulated process that involves burning organic material from agriculture and forestry wastes, also known as biomass, produces biochar, a charcoal-like substance. Despite its resemblance to typical charcoal, biochar is manufactured using a unique method to reduce pollution and properly store carbon (Spears, 2018). Organic materials like wood chips, leaf litter, and dead plants are burned in a container with very little oxygen during pyrolysis. When the products are burned, they produce extremely few harmful pollutants (Spears, 2018). The organic material is converted to biochar during the pyrolysis process, a stable form of carbon that cannot easily escape into the atmosphere. The pyrolysis process produces energy or heat that can be stored and used as a sustainable energy source. Biochar is significantly more effective than other types of charcoal at turning carbon into a stable form, and it is also far safer. Biochar is black, very porous, lightweight, fine-grained, and has a huge surface area in terms of physical attributes. Carbon accounts for over 70% of its mass, with nitrogen, hydrogen, and oxygen, among other components, accounting for the remainder. Soil erosion is a major challenge in agriculture around the world. As a remedy to this expanding problem, researchers proposed utilising biochar to restore the condition of damaged soils. Biochar can assist enhance soil quality in a number of ways, including strengthening soil structure, boosting water retention and aggregation, lowering soil acidity, increasing microbial activity, and so on.

The only plant-digestible source of chitin is found in the solid faeces of insect larvae, which is known as Black Soldier Fly Larvae (BSFL) or Hermetia illucens. This chitin produces antimicrobial peptides that act as a protective barrier when exposed to environmental stress (Sistrunk, 2016). Frass also contains bacteria that contribute to the nitrogen cycle by nitrifying and nitrogen-fixing, as well as microorganisms that assist plants to absorb nitrogen (Behie & Bidochka, 2013). It has been proven that sites with far more artificial fertilizers produce more greenhouse gases, such as nitrous oxide, whereas BSFL frass can store carbon and nitrogen in the soil (Hawkinson, 2005). (Lovett and colleagues, 2002). By allowing microbes to fix nitrogen, BSFL frass reduces nitrogen depletion in the atmosphere and groundwater pollution (Lovett et al., 2002). Because plants can't absorb nitrogen straight from the air, bacteria must fix it before it can be absorbed by the plants. Bacillus and Pseudomonas aid in the fixation of atmospheric bacteria in frass, while other nitrifying bacteria make nitrogen available to plants in the soil for photosynthesis (Zahn, 2017).

1.2 Problem Statement

Awareness of consuming organic food has been raising among consumers (Mohamad et al., 2014). Hence, the demand for organic food also has been an increase. In Malaysia, the organic food business is confronting a number of issues. Although the demand for organic food is increasing, the supply of organic products in the local area is not keeping up. Aside from the inconsistency of supply, the range of organic food available in the area is also limited. As a result, Malaysia continues to rely largely on imported organic food, particularly from the United States, Japan, Australia, New Zealand, and China (Dardak et al., 2009). Besides, Inadequate fertiliser management skill has resulted in imbalanced fertiliser application (Aryal et al., 2021). To increase plant growth and output, people over-fertilize the soil. It's possible that this will create more

damage than good. Indoor plants can also be hampered by too much, too little, or the wrong type of fertiliser, which can cause growth and fruit production to halt or stop. Inappropriate and unbalanced nutrient addition not only affects nutrient usage efficiency and profitability, but it also raises environmental concerns associated with wasted nutrients being lost through emissions, leaching, or run-off (Aryal et al., 2021). Organic fertiliser should be used in correct amount in order to have a healthy growing of a plant or vegetables.

To address all of these issues, planting media enriched with biochar and BSFL will be the most effective approach. This planting media will be made using a variety of biochar + frass fertiliser ratios and will be used to evaluate the growth and yield of the plants throughout the study. The biochar and BSFL enriched planting media do not require pesticides or fertilisers because they already contain the majority of the nutrients required for plant growth.

1.3 Objectives

The general purpose of this research is to create an organic planting media enhanced with biochar and BSFL. The following are the specifics of this research:

- 1. To evaluate the effect of the planting media enriched with biochar and BSFL frass on the growth and yield of Jimao choy plant.
- 2. To analyse nitrogen, phosphorus and potassium content in different ratio of planting media enriched with biochar and BSFL.
- 3. To assess nitrogen, phosphorus and potassium content in biochar and BSFL.

1.4 Hypothesis Statement

In response to the study questions, a null and alternative hypothesis have been developed, as shown below. These hypotheses can be tested using the following criteria:

H₀: Planting media with different ratios of biochar and BSFL frass not affect plant growth of Jimao choy.

H₁: Planting media with different ratios of biochar and BSFL frass will affect plant growth of Jimao choy.

1.5 Scope of the study

This study included the preparation of planting media which consist of biochar and BSFL frass in the different ratios that was tested on 'Jimao choy' plant. Instead of soil, coco peat will be used as a media and plant Jimao choy in poly bags. Throughout this research, the height of the plant, number of leaves, and yield were observed to compare the best media ratio mixes. Besides, the nitrogen, phosphorus and potassium (NPK) content in each different ratio of media was identified by using Kjeldahl method, colour development, followed by taking the absorbance reading by using a spectrophotometer and an apparatus, Horiba LAQUAtwin potassium ion meter, was used to determine the potassium content. This study was conducted at Agro Techno Park (ATP), and also at Chemistry Laboratory, Universiti Malaysia Kelantan, Jeli Campus.

1.6 Significance of the study

This study is essential to develop a good planting medium that can be very beneficial for the general population, government, industries farmers and researchers. Most of the people are aware of the presence and the use of the organic fertilisers. However, not everyone knows the best ratio mixes of organic fertiliser, that is efficient for plant growth. From this research, general population and farmer are able to get an efficient planting media ratio, which can be used for plantation. Besides, those who are staying in urban, also can use this optimized organic fertilizer to grow fresh and organic vegetables or fruits by their own. Here, at urban it is difficult to get an organic vegetables or fruits. Most of the farmers are using pesticides, herbicides, and chemical fertilisers to increase the growth rate of the plant. Perhaps, the farmers can increase their income by using this planting media since it has a potential in increasing the yield of a crop. The advantages that may get by government and industries are increases profit in sustainable agriculture since this planting media will increase the yield and input does not cost much. Besides expand the profit by collaborating with international countries in agriculture sectors. This research also can be used as a reference for more sophisticated researchers.

KELANTAN

CHAPTER 2

LITERATURE REVIEW

2.1 Organic Agriculture

With customers' increased preference for organically grown food for health reasons, the demand for animal waste is likely to skyrocket. Organic farming has the potential to thrive in Malaysia. Because of health concerns, there is a growing preference for organically produced food. Organic farming has a high labour requirement, which drives up production costs (Ahmad, 2001). The Department of Agriculture (DOA) has taken the lead in developing a draught Malaysian Standard - Guidelines for the Production, Processing, Labelling, and Marketing of Organically Produced Food (Ahmad, 2001). In many ways, modern farming systems undermine community well-being (Schmid et al., 2011). Huge areas of natural habitats, including their ecosystem services, have been destroyed; plant protection measures have resulted in human health issues, and they are responsible for approximately 30% of greenhouse gas emissions (Sachs et al., 2010). Organic farming, as an alternative to conventional agriculture, aims to reduce its environmental impact by using crop rotation, pathogen-resistant cultivars, limited amounts of chemical pesticides, and organic manure instead of synthetic fertilisers.

2.2 Black Soldier Fly Larvae (BSFL)

The sole plant-digestible source of chitin is BSFL (Hermetia illucens), which is found in the solid faeces of insect larvae. This chitin produces antimicrobial peptides that act as a protective barrier when exposed to environmental stress (Sistrunk, 2016). Frass also contains bacteria that contribute to the nitrogen cycle by nitrifying and nitrogenfixing, as well as microorganisms that assist plants absorb nitrogen (Behie & Bidochka, 2013). BSFL frass also minimises nitrogen depletion in the atmosphere and groundwater pollution by allowing microbes to fix nitrogen (Lovett et al., 2002). Because plants cannot absorb nitrogen from the atmosphere directly, bacteria must fix the nitrogen before it can be absorbed by the plants. Nitrifying bacteria convert ammoniacal nitrogen to nitrate nitrogen, allowing plants to absorb more nitrogen through their roots (Alattar et al., 2016).

Alattar et al. (2016) conducted a study on the effects of microaerobic fermentation and BSFL food scrap processing residues on maize plant growth (Zea mays). Kitchen garbage provided all of the organic components used in the corn plant studies. Fruits, vegetables, bread, coffee grounds, rice, cereals, and dairy goods were among the items that were thrown away. Except for BSFL, both treatments and controls increased 30 cm in height on average over the first three weeks of the study (Alattar et al., 2016). BSFL therapies slowed development even at this early stage, with an average of 11 cm after three weeks. Plant growth may be hindered when the BSFL soil ratio is 1:2 for a variety of reasons, including loss of some primary nutrients, poor soil drainage resulting in anaerobiosis, or phytotoxic components. The high ammonium concentrations in BSFL residues, as well as the limited porosity of the residues, were used to hypothesise these effects. Despite substantial studies into the conversion of organic waste into BSFL biomass for animal feed, no studies on the utilisation of BSFL solid residues from food scrap feedstocks as soil supplements have been conducted (Diener et al. 2011; Makkar et al. 2014). More research on the stabilisation of BSFL solid residue for application as a soil amendment is required.

Choi & Hassanzadeh (2019) published a study named "BSFL Frass: A Novel Biofertilizer For Improving Plant Health While Minimizing Environmental Impact." This study reveals that BSFL frass does not spread illness but rather guards against it, meaning that regularly applying frass to soil can assist to avoid fungal disease caused by pathogens like Rhizoctonia, Fusarium, and Pythium. According to the findings, no R. solani or F. oxysporum developed in any of the two disease transmission trials, showing that the disease caused by the fungi was metabolised by the larvae and turned into safer compounds for the ecosystem. As a result, BSFL frass can be used as an organic fertiliser without polluting the environment. The pH ranges in frass treatments were also more appropriate, which is important for the formation of beneficial bacterial populations in frass and plant growth (Perry, 2003). The pH results correlate with the high amounts of nitrate in the frass treatment groups because a higher concentration of nitrifying and nitrogen-fixing bacteria permits the plant to consume more nitrogen.

2.3 Biochar

Biochar is a carbon-rich organic substance, an organic amendment, and a byproduct of biomass pyrolysis at high temperatures and low oxygen levels (Rawat et al., 2019). Pyrolysis is a process for producing biochar that includes heating biomass in the absence or near absence of oxygen, producing oil and gas as byproducts (Hofstrand, 2009). Biochar improves the fertility and condition of the soil (Hofstrand, 2009; Zhang et al., 2020). In terms of physical properties, biochar is black, very porous, lightweight, fine-grained, and has a large surface area. Carbon accounts for almost 70% of its total mass (Spears, 2018). The remaining percentage is made up of nitrogen, hydrogen, and oxygen, among other elements. Biochar's chemical makeup changes based on the feedstocks used and the heating processes used.

Biochar supports the Earth's soil resource by increasing productivity and crop yields, lowering soil acidity and many more. Because it contains organic matter and nutrients, biochar boosted soil pH, electric conductivity (EC), organic carbon, total nitrogen, useable phosphorus, and cation-exchange capacity (Chan et al., 2007; Liang et al. 2006; Rawat et al., 2019). Biochar boosted leaf nutritional content while decreased nutrient runoff in a sandy soil test, according to researchers (Solaiman et al., 2020). Poultry litter biochar in conjunction with fertilisers and compound poultry manure (CPM) supplied healthy fruit and enhanced cucumber development and production by enhancing soil quality, nutrient concentration in soil, and water-holding ability, and therefore making the soil favourable to better plant growth. The rise in nutrient concentrations in leaves can be directly affected by plant nutrient uptake due to the nutrient content of biochar, its release properties, availability of nutrients, and increased absorption of nutrients (Lehmann et al., 2003; Pandian et al., 2016). Mulcahy et al. (2013) discovered that tomato growth, yield, and nutrient concentrations improved considerably in sandy soils modified with biochar. As previously indicated, adding more biochar, with or

without organic and inorganic fertilisers, enhanced plant absorption of P, K, Ca, Zn, and Cu, as well as fertiliser performance, and hence reduced nutrient leaching from soil (Lehmann et al., 2006).

2.4 Cocopeat

Cocopeat is a multi-purpose growth medium made from coconut husk. Sand and other impurities such as animal and plant waste are removed from the fibrous coconut husk after it has been pre-washed, machine dried, and sieved. Cocopeat is a good substitute for peat moss and rock wool (Nature's Bounty PLC, n.d.). It is an ideal growing medium for plant crops due to its high water holding capacity and air-filled porosity. There are no soil-borne infections or weeds, therefore it's completely sustainable and environmentally friendly. It has a pH range of 5.7–6.5 and an EC of less than 1 mS/cm, making it perfect for plant growth. Coco coir may be reused because it is so environmentally friendly. After a short rinse and strain, it will operate properly again.

When compared to soil, coco peat absorbs far more water and gradually releases it to plant roots (Grant, 2019). Using coco peat as a planting medium has numerous advantages. It absorbs a lot of water. According to reports, a kilogramme of cocopeat can absorb and store seven litres of water for several months (Siraj, 2018). The great porosity of the coco peat substratum allows for good air circulation and rapid vegetative proliferation when planted with saplings. It's also high in nitrogen, potassium, phosphorus, magnesium, zinc, and other farm-related nutrients (Siraj, 2018). Cocopeat is also utilised by home gardeners as a sustainable alternative to soil. Hydroponic plants cultivated in cocopeat grow 50% quicker than those planted in soil. Because peat has enough nutrients on its own, it eliminates the need for fertilisers, herbicides, and pesticides. Because peat retains water for a long time, it reduces the amount of water and effort required to water the plant. Coco peat, when used instead of peat moss in the culture of cape gooseberry seedlings, increases root volume, according to Daz et al. (2010). Because it is porous, it provides for improved root aeration.

UNIVERSITI MALAYSIA KELANTAN

CHAPTER 3

METHODOLOGY

3.1 Material and Apparatus

3.1.1 Material

The planting media was made by using all natural and organic fertilisers. The soil was replaced with coco peat in polybags. First of all, the Jimao choy seeds, which were bought from alice4869 shop (shopee), were planted in agriculture soil for seed germination, and then it was transferred to a polybag. Jimao choy plant was used in this research to study about the effect of the optimised planting media enriched with biochar and BSFL frass on the growth parameter and yield of a plant that is planted with different ratios of fertilisers. Biovae store sold black soldier fly larvae (organic fertiliser and soil amendment made from herbivore insect faeces) (shopee). Cocos nucifera is a type of coconut (Coco peat). Biochar is a type of biochar that is (carbon-rich organic material, an organic amendment, and a by-product generated by pyrolysis of biomass at high temperatures and low oxygen levels). Agriculture soil.

3.1.2 Apparatus

5 in x 7 in size of poly bag (40 bags), digital analytical scale (1 unit), measuring tape (1 unit), plant tags (40 units), hand gloves (1 unit), watering can (1 unit).

3.2 Method

3.2.1 Preparation of germination bed

The agricultural soil was filled in the two egg cartons instead of seedling trays. Then, the egg cartons were watered using a pressure sprayer bottle. After that, the Jimao choy seed was sown in the two trays. Make sure there are two or three seeds in each small pot. The seeds need to be watered every other day to keep moist. The seedlings were ready to transfer to the poly bags that consist of different ratios of media, after true leaves form.

3.2.2 Preparation of planting media

Planting media consisting BSFL frass and biochar were made in various ratios, as shown in Table 1. Coco peat was used to replace the soil. To test the effect of optimised planting media enriched with biochar and BSFL frass on the growth and yield of a plant planted with different ratios of planting medium and it will be planted with a short mature period plant, Jimao choy. Different ratios of biochar and BSFL frass which was mixed with coco peat were prepared to get a total of 95 g of optimised planting media. The weight of coco peat was be made constant at 85 g and another 10 g will be a ration variation of biochar and BSFL. The compressed coco peat was immersed in water for 30 minutes to rehydrate before being put in the poly bags. 3 replicates were be used for each treatment, in this study. Do not combine any fertilizers which act as the control variable, To. After the media were mixed according to the ratio, the media was transferred into

polybags for planting. At the same time, the nitrogen, phosphorus, and potassium (NPK) content of each planting media with different ratios of biochar and BSFL were identified by using Kjeldahl method to analyse nitrogen content, Dilute double acid, Mehlich 1 method which is then the prepared reagents will use for colour development method to analyse phosphorus content using a spectrophotometer and for potassium an apparatus was used which was Horiba LAQUAtwin Potassium ion meter.

		Treat	ment
Treatment number	Coco peat	Biochar	BSFL frass
T ₀	85 g	-	-
(0 Biochar : 1 BSFL frass)	85 g	-	10 g
T ₂ (1 Biochar : 1 BSFL frass)	85 g	5 g	5 g
T ₃ (1 Biochar : 2 BSFL frass)	85 g	3.3 g	6.6 g
T ₄ (1 Biochar : 3 BSFL frass)	85 g	2.5 g	7.5 g
T ₅ (1 Biochar : 0 BSFL frass)	85 g	10 g	-
T ₆ 2 Biochar : 1 BSFL frass	85 g	6.6 g	3.3 g
T ₇ (3 Biochar : 1 BSFL frass)	85 g	7.5 g	2.5 g

Table 3.1: The various treatments of planting media

3.2.3 Preparation of sample

The rain-shelter house at ATP 1 was cleaned and made sure there were no holes or damages in the rain-shelter house. After the planting media were prepared, the germinated Jimao choy seeds were transferred in a polybag about 1/2 inches deep in the planting media, that were prepared with different ratios. After planting, it is very important to water the plant and check pH value of the soil every other day. This study was used a completely randomized design (CRD) experimental design method.

T_2R_2	T4R1	T ₇ R ₃
T_5R_1	T_3R_2	T_0R_2
T_7R_2	T_5R_2	T_1R_3
T_0R_1	T_4R_3	T_3R_3
T_5R_3	T_6R_1	T_2R_1
T_1R_1	T_6R_3	T_4R_2
T_6R_2	T_1R_2	T_3R_1
T ₀ R3	T_7R_1	T_2R_3

 Table 3.2: The Completely Randomized Design (CRD)

MALAYSIA

3.2.4 Parameters tested

In this study, four parameters were tested, which were the height of the plant, pH, number of leaves, fresh weight, and dry weight. These parameters should be measured throughout this study to analyse the effect of biochar and BSFL on plant growth. The fresh weight of the plants for each treatment was measured immediately after harvesting. This is because plants have high water content and waiting to weigh them may cause some drying and thus produce inaccurate data. Furthermore, using dry weight as a measure of plant growth would be more valid because plants have a high water content and the amount of water in a plant depends on the amount of water in its environment. So, when it was dried, the water content in the plant's cells would evaporate, and we could get reliable data to observe the effects of different ratios of biochar and BSFL frass on the jimao choy. Every other day, the height of the plants was measured using a measuring tape in centimetres. This parameter is very important to measure since it will show a significant difference in the effect of different ratios of organic fertilizers, which were biochar and BSFL frass. Besides, the pH of the soil in each treatment was also measured using the soil pH metre to indicate the soil condition.

Moreover, the nitrogen (N), phosphorus (P), and potassium (K) content in the soil were also analysed using three different methods. The N, P and K content in biochar and BSFL data were represented as before planting, while treatment 1 (which was only mixed with BSFL frass) and treatment 5 (which was only mixed with biochar) were represented as after planting. From this, we could differentiate the amounts of N, P, and K that were absorbed or used by the crop. These three nutrients are very essential for plant growth. Any one of these deficiencies would cause the crop to wilt, turn yellowish, and eventually die.

3.3 Laboratory Analysis Method

3.3.1 NPK analyzing in soil samples

The plant that was used this survey is jimao choy, since it was a fast-growing and could be harvested quickly. The nitrogen, phosphorus, and potassium content were analyzed using three different methods; Kjeldahl method to analyse nitrogen content, Dilute double acid, Mehlich 1 method which is then the prepared Reagents will used for colour development method to analyse phosphorus content using a spectrophotometer and for potassium an apparatus was used which was Horiba LAQUAtwin Potassium ion meter.

3.3.2 Method analysing nitrogen content in the soil

To measure nitrogen content in soil samples, the Kjeldahl method was used in this research. First of all, two tablets of Kjeldahl catalyst were added inside the Kjeldahl digestion tube. Then, 20 mL of distilled water, followed by 12 mL of sulphuric acid, were added into the tube. The same tube was then filled with 1 g of soil sample. The sample was taken after the soil from each polybag was mixed thoroughly. Next, the 30 samples were heated at 400 °C for 4 hours until the samples turned a greenish blue colour. Meanwhile, the boric acid and sodium hydroxide (40%) were prepared. To prepare 450 mL of the boric acid solution, 18 g of boric acid (powder form) and 300 mL of water were added to a beaker. Then, it was stirred on a hot plate at 100 °C. To prepare sodium hydroxide, 40% and 400 g of sodium hydroxide (powder form) were diluted with 1000 mL of distilled water.

The samples were cooled once they had turned greenish-blue. At the same time, 4.5 mL of bromocresol green and 3.15 mL of methyl red were added to the boric acid solution. Then, 30 mL of the boric acid indicator solution was added into a conical flask and kept aside to be used for distillation. Upon cooling, 80 mL of distilled water, followed by sodium hydroxide, were added into the Kjeldahl digestion tube. Moreover, the samples underwent a distillation process. The samples were distilled until the boric acid indicator solution turned purple to green in colour. The last step was titration, where the samples were titrated with 0.01 M of hydrochloric acid until the colour changed from green to purple. The N content was taken from the acid used from titration.

3.3.3 Preparation of Plant Tissues for Analysis of Nutrients (P & K)3.3.3.1 Extraction

The single dry ashing method was carried out to determine the organic material in the soil sample. First of all, the soil samples (the sample was taken after the soil from each polybag mixed thoroughly) from all the treatments were taken, and 1 g of each sample was placed in the crucible. The crucible containing the samples was then placed in a muffle furnace and ashed at 520 °C for 6 hours. After ashing, 2-3 drops of distilled water were added into the crucible, followed by 2 mL of concentrated hydrochloric acid. The sample, was then, evaporated to dryness in a fume chamber using a hot plate. Once the samples were evaporated completely dry, the hot plate was turned off. The samples were treated with 20% nitric acid, HNO₃ (20% HNO₃ = 200 mL of HNO₃ in 1 L of distilled water), and allowed to cool on the warm hot plate. After that, the samples in the crucible were filtered into a 100 mL volumetric flask and made up to 100 mL. This solution is then used to identify potassium and phosphorus content in the samples.

3.3.4 Method analysing phosphorus content in the soil 3.3.4.1 Dilute Double Acid, Mehlich 1 Method (Mehlich, 1953)

Mehlich 1 method was used in this research to prepare Reagent A and Reagent B, where it will be used to identified phosphorus content in the soil sample. To prepare Reagent A, 6 g of ammonium molybdate, (NH4)6MO7O24 was dissolved with deionized distilled water (\approx 100 mL). In a different beaker, 0.1454 g of potassium antimonyl tartrate, K(SbO)C4H4O6 was weighted and dissolved with deionized distilled water (\approx 50 mL). 500 mL of deionized distilled water, followed by 74 mL of sulfuric acid, H2SO4 were added into a 1 L volumetric flask. Next, ammonium molybdate, (NH4)6MO7O24 was added and allowed it to cool down at room temperature for approximately 1 hour. Then, potassium antimonyl tartrate, K(SbO)C4H4O6 was added and make up to 1 L with deionized distilled water. This Reagent was mixed thoroughly and left overnight. The next day, Reagent B was prepared using Reagent A. To prepare Reagent B, 2.64 g of ascorbic acid was weighed and 500 mL of Reagent A was added to it. This Reagent is then used to determine phosphorus content by using colour development method.

3.3.4.2 Colour Development

In a 50 mL volumetric flask, 8 mL of reagent B was added. Then, 1 mL of the soil extract was pipetted into the volumetric flask, followed by a few drops of distilled water. When the sky-blue colour was not formed, another 1 mL of the soil extract was pipetted into the volumetric flask and the volume was noted down for calculation purposes. After the blue colour developed, the solution was pipetted into a cuvette and the absorbance was measured with UV-VIS spectrophotometer with a wavelength of 882 nm.

3.3.5 Method for analysing potassium content in the soil

Once the samples were extracted after ashing, the solution was used to determine potassium content by using an apparatus that was designed by Horiba LAQUAtwin Potassium ion meter. The apparatus was calibrated using two standard solutions, which were 150 ppm and 2000 ppm. After calibration, 2-3 drops of the soil extraction solution were added inside the apparatus, and the readings for all samples were recorded.

3.4 Statistical Analysis

3.4.1 Anova & Tukey's Honest Significant Difference test

The single factor, variation, is the focus of this study and its growth parameter and pH value analysis. As a result, the finest way for statistical analysis to detect the significant value and difference between means is ANOVA and Tukey's Honest Significant Difference test. The analysis of variance (ANOVA) is a statistical approach for dividing the observed aggregate variability of a data set into two parts: systematic and random variables (Kenton, 2021). Systemic issues, on the other hand, have a statistical impact on the data gathering. The ANOVA test is used in regression analysis to analyse the impact of independent factors on the dependent variable. Besides, dividing the
absolute value of the difference between pairs of means which was got from the one-way ANOVA test's standard error of the mean (SE). This method is known as Tukey's Honest Significant Difference test.

Rather than comparing pairs of values, Tukey's Honest Significant Difference test compares differences between means of values. The Tukey test value is computed by dividing the absolute value of the difference between two means by the one-way ANOVA test's standard error of the mean (SE) (Kevin, 2018). The SE is calculated by dividing the square variance by the sample size. The Tukey test is a post hoc test, meaning it compares variables after data has been collected (Kevin, 2018). In contrast, an a priori test makes these comparisons ahead of time.

UNIVERSITI MALAYSIA KELANTAN

CHAPTER 4

RESULTS AND DISCUSSSION

4.1 Results

4.1.1 Plant Height

The height of the plant is very important in any agriculture-based research to understand the effect of variables on it. In this research, each plant's height in each treatment and control variables were measured to study the effects of the biochar and BSFL. The fertilisers, biochar, and BSFL, were applied once after transplantation for each sample, except for control plants. Besides, the height of the plants was measured until the day of harvesting. T₅ recorded the lowest height when compared to control (T₀) and other treatments. While T₆ recorded the highest value compared to control plants and treatment plants, which was 15.1 cm. The T₂ and T₇ plants, on the other hand, showed a slight difference from the T₆ plants. We can see that only T₅ grows very slowly compared to T₀. The BSFL treatments resulted in a great difference when

compared to the control plants and the other treatments. The biochar and BSFL frass with a ratio of 2:1 had the fastest and highest growth rate of all the samples, which was $T_6R_1 = 15.2$, $T_6R_2 = 13.5$, and $T_6R_3 = 16.5$. Besides, the mean height of T_6 was 15.07 cm. (Refer to appendices) According to ANOVA, the planting media that contain biochar

and BSFL frass with a different ratio have a significant effect on the height of the plants (Table 4.20 appendices).

Average height of plants in the interval of 2 days after transplant

Figure 4.1 : The mean height of plants for each treatments.

Height, cm						
	Treatment	N	Subse	t for alpha = 0.0)5	
			1	2	3	
Tukey HSD ^a	T5	3	5.967	λ.		
	ТО	3	6.800	6.800		
K	Т3	3	10.667	10.667	10.667	
	T4	3		12.467	12.467	
	T1	3	TA	N.T.	13.067	
	T7	3	LA.		14.267	
	T2	3			14.433	
	Т6	3			15.067	

Table 4.1 : The mean height of plants for each treatments in homogeneous subsets.

	Sig.			.222	.090	.286
Means for groups in homogeneous subsets are displayed.						
a. Uses Harmonic Mean Sample Size = 3.000.						

4.1.2 Plant Weight

As with plant height, a plant's weight also plays a major role in determining the effects of biochar and BSFL frass with different ratios on the growth parameters. There were significant weight variations between the two treatments. T_1 has the greatest plant fresh weight of 17.24 g, followed by the T_7 , which has 11.43 g, the T_2 , which has 13 g, and the T_6 , which has 10.93 g. Fresh weight for other treatments has a weight of 10 g and below. The fresh weight of T_4 and T_3 was 10.57 g and 10.20 g, respectively. While the fresh weight for T_0 was 0.33 g, T_5 has the lowest fresh weight compared to the control plant and other treatments, which was 0.28 g. For dry weight, T_1 has the greatest value which was 0.0343 g, followed by T_2 , which has 1.0071 g, the T_7 , which has 0.9767 g, and T_6 , which has 0.9188 g. Moreover, the dry weight for T_4 , T_3 , T_5 , and T_0 were 0.7536 g, 0.7089 g, 0.0365 g, and 0.0343 g respectively. The treatment that obtain the lowest fresh weight was T_5 while for dry weight was T_0 . According to ANOVA, the planting media that contain biochar and BSFL frass with a different ratio have a significant effect on the weight of the plants (Table 4.21 & 4.22 appendices).

Treatment	Fresh Weight, g	Dry Weight, g
T_0R_1	0.61	0.0615
T ₀ R ₂	0.1	0.0114
T_0R_3	0.2	0.0299
T_1R_1	22.7	1.4523
T_1R_2	15.81	1.021
T_1R_3	13.2	0.9552
T_2R_1	12.7	0.9396
T_2R_2	16.9	1.2274
T ₂ R ₃	9.4	0.8543
T_3R_1	19.8	1.3808
T_3R_2	1.7	0.1185
T ₃ R ₃	9.1	0.6275
T_4R_1	12.9	0.866
T_4R_2	6.8	0.4471
T_4R_3	12	0.9477
T_5R_1	0.45	0.0541
T_5R_2	0.32	0.042
T_5R_3	0.08	0.0135
T_6R_1	10.9	1.9875
T_6R_2	10	0.842
T ₆ R ₃	11.9	0.9268
T ₇ R ₁	13.7	1.0729

Table 1 2.	The	frach	and	dere	waight	of nlo	not for	aaah	traatmont
1 able 4.2.	Ine	nesn	anu	ul y	weight	or pra	1111 101	each	liealment
				~	0	1			

T ₇ R ₂	10.3	1.0152
T ₇ R ₃	10.3	0.8421

Figure 4.2 : The mean fresh weight of plants for each treatments.

Weight in g						
	Treatment	Treatment N		lpha = 0.05		
			1	2		
		AV				
Tukey HSD ^a	T5	3	.2833			
	ТО	3	.3033			
	Т3	3	10.2000	10.2000		
	T4	3	10.5667	10.5667		
	Т6	3	10.9333	10.9333		
	Τ7	3	11.4333	11.4333		
	T2	3		13.0000		

Table 4.3: The mean fresh weight of plants for each treatment in homogeneous subsets.

	T1	3		17.2367		
	Sig.		.067	.463		
Means for groups in homogeneous subsets are displayed.						
a. Uses Harmonic Mean Sample Size = 3.000.						

Figure 4.3 : The mean dry weight of plants for each treatments.

	Dr	y Weight, g		
			Subset for a	llpha = 0.05
М	Treatement	Ν	C 1	2
Tukey HSD ^a	Т0	3	.034267	
	T5	3	.036533	
	T3	3	.708933	.708933
	T4	3	.753600	.753600
	Τ7	3	.976733	.976733
	T2	3	1.007100	1.007100
	T1	3		1.142833

Table 4.4 : The mean dry weight of plants for each treatments in homogeneous subsets.

T6	3		1.252100
Sig.		.061	.586

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

4.1.3 Number of Leaves

According to ANOVA, the application of different ratios of biochar and BSFL had a significant effect on the number of leaves (Table 4.23 appendices). The highest mean number of leaves (6.67) was found in T₆, while the lowest number (3.33) was found in T₅. Other treatments' mean values do not differ much when compared to T₅ and T₆. Although biochar and BSFL frass were applied in different ratios to all the treatments, the mean value for T₁, T₂ and T₇ was the same, which was 5.00. Besides, the mean number of leaves for T₃ and T₄ was 5.67 and 4.33, respectively. T₀ record the second-lowest number, which was 3.67.

Figure 4.4 : The mean number of leaves of plants for each treatments.

Table 4.5 :	The mean	number of [leaves of	plants for	each	treatments	in homogeneous
1 abic 4.5.	The mean	number of		plants 101	caci	treatments	in noniogeneous

		LEAVES		
	Treatment	N	Subset for alpl	na = 0.05
X X 35			1	2
Tukey HSD ^a	T5	3	3.33	
	ТО	3	3.67	3.67
	T4	3	4.33	4.33
	T1	3	5.00	5.00
	T2	3	5.00	5.00
	T7	3	5.00	5.00
	T3	3	5.67	5.67
	T6	3		6.67
	Sig.	3 7 FT	.225	.062
Means for grou	ps in homogeneou	s subsets are d	isplayed.	

subsets.

Treatment	Number of leaves
T ₀ R ₁	4
T ₀ R ₂	4
T ₀ R ₃	3
T ₁ R ₁	6
T_1R_2	4
T_1R_3	5
T_2R_1	5
T_2R_2	5
T ₂ R ₃	5
T_3R_1	8
T_3R_2	4
T ₃ R ₃	5
T_4R_1	4
T_4R_2	4
T_4R_3	5
T_5R_1	4
T_5R_2	4
T_5R_3	2
T_6R_1	6
T ₆ R ₂	6
T ₆ R ₃	8
T_7R_1	5

Table 4.6: The average number of leaves of plant for each treatments

T_7R_2		6	
, 2			
T D		4	
17 R ₃		4	

4.1.4 Planting Media pH

Unlike height and weight, planting media pH does not show many differences in each treatment compared to the controlled plants. Since in this research I was using cocopeat instead of soil, I took the pH value of the cocopeat that was used as a control, T₀. The average pH value of T₀ was 6.4. While T₂ and T₇ had the same mean value of soil pH, which was 6.6, it was the greatest value recorded compared to controlled plants. The least mean value of pH was recorded for T₃, which was 6.1. Although it is the lowest value shown, it does not make much difference when compared to controlled plants and other treatments. Besides, T₁ and T₅ also recorded the same average pH value, which was 6.5. The average pH value for T₄ and T₆ was 6.4 and 6.3, respectively. According to ANOVA, planting media containing different ratios of biochar and BSFL frass have no significant effect on the pH value of the planting media (Table 4.24 appendices).

Figure 4.5 : The mean of pH of plants for each treatments.

	р	н		
	Treatment	N	Subset for alpha	
		_	= 0.05	
			1	
Tukey HSD ^a	T3	3	6.133	
	Т6	3	6.333	
	T4	3	6.400	
	ТО	3	6.400	
	T1	3	6.467	
	T5	3	6.533	
	T2	3	6.600	
	T7	3	6.600	
	Sig.		.703	
Means for group	s in homogeneous	subsets are disp	layed.	
a. Uses Harmon	nic Mean Sample	Size = 3.000.		

Table 17	. The mean	of mII of	mlanta for a	ach tractmant	in homog	maana anhaata
1 able 4.7	: The mean	OF DELOF	Diants for e	ach treatments	s in nomoge	eneous subsets.
		01 01 01	press 101 •			

4.1.5 NPK Content in Each Treatment

Nitrogen (N), Phosphorus (P) and Potassium (K) are very crucial for plants to grow healthy and well. In general, BSFL frass contained more nutrients than biochar, but biochar contains more carbon and chloride ions (Song et al., 2021). NPK content has also been taken from biochar and BSFL to find out how much nitrogen is in the fertiliser and it will be compared with treatment 1 and treatment 5. This is because at T_1 and T_5 , only BSFL frass and biochar were applied, respectively. And it will be easy for us to compare the NPK content before and after planting. T_1 has the greatest nitrogen content, which was 5.5 mL, followed by T4, which had 5.4 mL, and then T2 and T3, which has the same amount of nitrogen, which was 5.1 mL. The nitrogen content in T6, which was 2.4 mL. The nitrogen content in T7 and T0 was 2.2 mL and 1.4 mL, respectively. While the nitrogen content of T5 has the lowest value compared to other treatments, which was only 1.2 mL, but it does not show much difference when compared to control plants. Moreover, nitrogen content in biochar and BSFL frass was 2.2 mL and 19.9 mL, respectively.

Next, the phosphorus content in the control, treatments, biochar and BSFL frass were identified using spectrophotometer. T_1 has the greatest phosphorus content, which was 685, followed by T₇, which has 413.34, and then T₄ and T₅, which was 384.17 and 341.30, respectively. Besides, phosphorus content in T₅, which has 341.30. Meanwhile, the phosphorus content in T₂, T₆ and T₀ was, 286.67, 274.17 and 268.54, respectively. While the phosphorus content of T₃ has the lowest value compared to control plants and other treatments, which was only 80.56. Furthermore, phosphorus content in biochar and BSFL frass was 273.89 and 546.67, respectively.

Lastly, the potassium content in the control, treatments, biochar and BSFL frass were identified using Horiba LAQUAtwin Potassium ion meter apparatus. T₄ has the greatest potassium content, which was 560,000 ppm, followed by T₁, which has 350,000 ppm, and then T₇ and T₃, which was 296,667 ppm and 263,333 ppm, respectively. Besides, potassium content in T₆, which has 240,000 ppm. Meanwhile, the potassium content in T₂ and T₅ was, 193,333 ppm and 186,667 ppm, respectively. While the potassium content of control variable, T₀ has the lowest value compared to and other treatments, which was only 152,333 ppm. Furthermore, potassium content in biochar and BSFL frass was 530,000 ppm and 933,333 ppm, respectively.

UNIVERSITI MALAYSIA KELANTAN

Figure 4.6 : The mean of nitrogen content of plants for each treatments, biochar and

BSFL

Table 4.8 : The mean of nitrogen content of plants for each treatments, biochar and

		NIT	ROGEN				
TT	Treatmen	Ν	Subset for $alpha = 0.05$				
	t	/	1	2	3	4	
Tukey	T5	3	1.200	~ ^			
HSD ^a	TO	3	1.367	1.367			
	Biochar	3	2.167	2.167	2.167		
	T7	3	2.200	2.200	2.200		
IVI	T6	3	2.400	2.400	2.400		
	T2	3	L 1	5.133	5.133		
	Т3	3		5.133	5.133		
	T4	3			5.433		
	T1	3			5.500		
	Frass	3				19.90	
			1.1	1 1		0	
	Sig.		.976	.052	.114	1.000	

BSFL in homogeneous subsets.

a. Uses Harmonic Mean Sample Size = 3.000.

BSFL.

Table 4.9 : The mean of phosphorus content of plants for each treatments, biochar and

PHOSPHORUS						
ИA	Treatment	N	Subset for alpha = 0.05 1			
Tukey HSD ^a	3	3	80.5567			
	0	3	268.5367			
	В	3	273.8900			
	6	3	274.1667			
	2	3	286.6667			
	5	3	341.2967			

BSFL in homogeneous subsets.

	4	3	<u>384.16</u> 67			
	7	3	413.33 <mark>67</mark>			
	F	3	546.66			
	1	3	685.0000			
	Sig.		.601			
Means for groups in homogeneous subsets are displayed.						
a. Uses Harmonic Mean Sample Size = 3.000.						

Figure 4.8 : The mean of potassium content of plants for each treatments, biochar and

BSFL.

Table 4.10 : The mean of potassium content of plants for each treatments, biochar and

POTASSIUM, ppm						
- IN	Treatment N Subset for alpha = 0.05					
			1	2	3	
Tukey HSD ^a	T0	3	152333.33			

BSFL in homogeneous subsets.

	T5		3	186666.67		
	T2		3	193333.33		
	T6		3	240000.00		
	T3		3	263333.33		
	Τ7		3	296666.67		
	T1		3	350000.00		
	Biochar		3	530000.00	<mark>5300</mark> 00.00	
	T4		3	560000.00	560000.00	
	Frass		3		933333.33	
	Sig.			.053	.057	
Means for groups in homogeneous subsets are displayed.						
a. Uses Harmonic Mean Sample Size = 3.000.						

UNIVERSITI

MALAYSIA

KELANTAN

4.2 Discussion

The seeds start to germinate on the 4th day after sowing, and true leaves start to grow on the 8th day. The plants showed much difference, neither in height nor in the number of leaves. In the first week after transplanting, T₁ was taller than control plants and other treatments. T₁ contains 10 g of BSFL frass, so initially, it grows taller and faster compared to other treatments. In the 2nd week, the plants that were treated with 6.6 g of biochar and 3.3 g of BSFL frass (T₆) grew taller than the other treatments. When it is compared on harvest week, T₆ grows taller, but it is thinner compared to T₁. Although T₁, was a bit shorter than T₆, it's dry and fresh weight was quite high compared to other treatments. Even the number of leaves in T₁ grows faster and healthier. Based on the jimao choy plant's growth, nitrogen plays a major role in weight. High nitrogen content in the soil will increase the weight of a plant or fruit. In general, nitrogen is used by plants as a building block to make enzymes and proteins. From this, we can conclude that since T₁ was treated with BSFL only, which has high nitrogen content, the fresh and dry weight of the plant is higher than other treatments because of the high density of cell components.

Other than that, the appearance, such as the colour of the leaves, of the plants has also been observed. The plants grow greener and healthier, but by the second week, most of the plants appear greenish-yellow. This situation is known as chlorosis. Chlorosis is a visible outcome of the plant's inability to produce enough chlorophyll for photosynthesis (Allentuck Landscaping, 2015). Plants get their green hue from chlorophyll, and if there is not enough, the leaves turn either pale or yellow. The reason why my plants appeared greenish yellow was because of the weather. It was raining all week and there was lack of sunlight. Chlorophyll is responsible for a plant's bright green hue. This material absorbs sunlight and transforms it into energy that is beneficial to plants (Witz, 2021). Chlorophyll cannot accomplish its work if the plants aren't getting enough sunlight. Yellowing in leaves and reduction in growth were noticed.

Furthermore, with the exception of T₀ (control variable) and T₅ (10 g of biochar), all of the plants appear greener and healthier on harvest day. From the results we obtained, nutrient content (NPK) in both treatments was very low. The height of the plants from these two treatments was shorter, and the leaves looked yellow and unhealthy. This is because the plants do not get enough nutrients to grow well. In this way, phosphorus is responsible for the strong growth of a plant. Insufficient phosphorus will lead to stunted growth and nutrient will not transport sufficiently to the plant (Anxin, n.d.). Besides, the yellowing in leaves was caused by low intake of water by the plant. In this case, potassium plays major role in helping the plant use water more efficiently, which helps to minimise infections and heat damage (Anxin, n.d.). Insufficiency of these two elements, causes the plants in T₀ and T₅ to turn yellow and the growth was inhibit or slows down.

Furthermore, the BSFL treatments resulted in a great difference when compared to the control plants and the other treatments. This due to frass contain high nitrogen, phosphorus and potassium, compared to biochar and controlled treatment. A research was carried out by Zahn (2017), to study "The effects of insect frass created by Hermetia illucens on spring onion growth and soil fertility". In this study, the author applies BSFL frass, compost and NPK fertilizer separately to identify the effects of these three fertilizers on spring onion growth and soil fertility. This study found that nitrogen and phosphorus were found abundantly in the frass (Zahn, 2017). At the same time, the optimum application of BSFL frass to the plant results in increasing the yield of the spring onion. Another study were carried out by <u>Bortolini</u> et al. (2020), shows that application of chicken manure treated with BSFL frass increase the soil properties and increases nutrient availability for the plants.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The objectives of this study were met by determining the impact of different ratios of planting media enhanced with biochar and BSFL frass on the growth and yield of the jimao choy plant. From the results we obtained, we can conclude that T_1 (0 : 1) and T_6 (2 : 1) show the best results compared to other treatments in many things. T_1 plants show a better result in weight, while T_6 plants show a better result in height and number of leaves. The fresh and dry weights of the T_1 plant were higher. Meanwhile, T_6 was taller and had a higher number of leaves and branches. However, there was no significant difference between T_1 and T_6 . In these 2 treatments, BSFL frass plays a major role in plants' growth and yield. This is probably due to the fact that frass has higher nutrient contents than biochar. Furthermore, the nitrogen, phosphorus, and potassium content in biochar and BSFL frass were analysed. From the results obtained, BSFL frass contains more NPK content than biochar. Because the frass contained more nutrients, it had a positive effect on the growth parameters and yield of the jimao choy plant.

5.2 Recommendation

This research study suggests that to get better results, utilising biochar and BSFL frass should be conducted in a wide range or using it on fruit plants to determine the ideal concentration and quantity that can be used to grow viable plants in an organic manner. This is because, in this research, it was only used a short mature leafy vegetable. Perhaps, this research should carry out with other fruit vegetables to get better results. Besides, it is also suggested to analyse other nutrient content in the soil sample, such as magnesium, calcium, etc., and find nutrient intake by each plant from the media supplied. Furthermore, the percentage of NPK utilised by the plant also needed to study further, to know the optimum requirement of NPK for the specific plant type. Insect frass has shown promise in terms of crop production and growth performance. Furthermore, a study into the chemical makeup of insect frass will aid in the creation of bio-organic for ecologically benign, long-term agricultural systems. The bio-organic composition should be used more frequently in the future so that farmers can get it.

MALAYSIA KELANTAN

REFERENCES

- Abdul Rahman, S. R., Nguzir, N. A., Mat Azmi, N. A., Mohmad Amin, N. S., & Abdul Rahim, M. (2017). 1st Colloquium for Final Year Project: Faculty of Hospitality, Tourism and Wellness. In KNOWLEDGE, ATTITUDE AND PERCEPTION TOWARDS ORGANIC FOOD CONSUMPTION IN KOTA BHARU KELANTAN (pp. 218–222). Kota Bharu, Kelantan; Universiti Malaysia Kelantan.
- Abu Dardak, R., Zairy Zainol Abidin, A., & Kasim Ali, A. (2009). Consumers' perceptions, consumption and preference on organic product: Malaysian perspective. *Economic and Technology Management Review*.
- Ademar Spironello, J. A. (2004, April). *Pineapple Yield and Fruit Quality Effected by Npk Fertilization In A Tropical Soil*. Retrieved from scielo: https://www.scielo.br/j/rbf/a/wWNLfjypzRVqMKCnBfVY9hg/?format=pdf&la ng=en
- Ahmad, F. (2001). Sustainable agriculture system in Malaysia. *Regional Workshop on Integrated Plant Nutrition System*.
- Ahmad, T., Shah, S. T., Ullah, F., Ghafoor, F., & Anwar, U. (2017). Effect of organic fertilizer on growth and yield of coriander. *Int. J. Agri and Env. Res*, *3*(1), 116-120.
- Alattar, M., Alattar, F., & Popa, R. (2016). Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays). *Plant Science Today*. https://doi.org/10.14719/pst.2016.3.1.179
- amrita.edu. (2022). Soil analysis-determination of available phosphorus content in the soil by Bray's method. Retrieved from amrita.edu: https://vlab.amrita.edu/?sub=2&brch=294&sim=1550&cnt=1
- Aryal, J. P., Sapkota, T. B., Krupnik, T. J., Rahut, D. B., Jat, M. L., & Stirling, C. M. (2021). Factors affecting farmers' use of organic and inorganic fertilizers in South Asia. *Environmental Science and Pollution Research*. https://doi.org/10.1007/s11356-021-13975-7
- Baskoro, H. H. (2015, MAY 27). *LAND8*. Retrieved from What's the Problem with Urban Agriculture?: https://land8.com/whats-the-problem-with-urban-agriculture/
- Beesigamukama, D., Mochoge, B., Korir, N. K., Fiaboe, K. K. M., Nakimbugwe, D., Khamis, F. M., Subramanian, S., Dubois, T., Musyoka, M. W., Ekesi, S., Kelemu, S., & Tanga, C. M. (2020). Exploring Black Soldier Fly Frass as Novel Fertilizer for Improved Growth, Yield, and Nitrogen Use Efficiency of Maize Under Field Conditions. *Frontiers in Plant Science*. https://doi.org/10.3389/fpls.2020.574592

- Behie, S. W., & Bidochka, M. J. (2013). Insects as a nitrogen source for plants. *Insects*, 4(3), 413-424.
- Bortolini, S., Macavei, L. I., Hadj Saadoun, J., Foca, G., Ulrici, A., Bernini, F., Malferrari, D., Setti, L., Ronga, D., & Maistrello, L. (2020). Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. *Journal of Cleaner Production*. https://doi.org/10.1016/j.jclepro.2020.121289
- Choi, S., & Hassanzadeh, N. (2019). *BSFL Frass: A Novel Biofertilizer for Improving Plant Health While Minimizing Environmental Impact*, 2(2), 41–46. https://doi.org/https://static1.squarespace.com/static/5a63b41dd74cff19f40ee749 /t/5db71f8468b83939b93f8d3c/1572282245292/Sarah+and+Neelah.pdf
- Coelho, S. (n.d.). Growing Bok choy: The Complete Guide to Plant, Care, and Harvest Bok choy. Retrieved from Morning Chores: https://morningchores.com/growingbok-choy/
- D. Rigby a, D. C. (2000, October 30). Organic farming and the sustainability of. Retrieved from elsevier : file:///C:/Users/USER/Downloads/1-s2.0-S0308521X00000603-main%20new.pdf
- Dennis Beesigamukama, B. M. (2020, September 23). *Exploring Black Soldier Fly Frass as Novel Fertilizer for Improved Growth, Yield, and Nitrogen Use Efficiency of Maize Under Field Conditions*. Retrieved from ncbi.nlm: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539147/
- Dubey, B., & Townsend, T. (2004). Arsenic and lead leaching from the waste derived fertilizer ironite. *Environmental Science and Technology*. https://doi.org/10.1021/es0493392
- El Bilali, H., Bassole, I. H. N., Dambo, L., & Berjan, S. (2020). Climate change and food security. *Agriculture and Forestry*. https://doi.org/10.17707/AgricultForest.66.3.16
- Ersek, K. (2021, April 19). 8 Advantages And Disadvantages Of Using Organic Fertilizer. Retrieved from holganix: https://www.holganix.com/blog/8-advantages-and-disadvantages-of-using-organic-fertilizer
- Everything About Growing Pak Choi In Containers / How To Grow Pak choy. (n.d.). Retrieved from balcony garden web: https://balconygardenweb.com/growingpak-choi-in-containers-how-to-grow-bok-choy/
- Geekgardener. (2011, June 20). Growing Bok choy in containers. Retrieved from geekgardener: https://geekgardener.in/2011/06/20/growing-bok-choy-in-containers/

- Hawkinson, C. (2005). *Beneficial in the garden*. Retrieved from Galveston County Master Gardener Association, Inc.: https://aggiehorticulture.tamu.edu/galveston/beneficials/beneficial-51_black_soldier_fly.htm
- Hofstrand, D. (2009, December). *Biochar A Multitude of Benefits*. Retrieved from agmrc.org: https://www.agmrc.org/renewable-energy/renewable-energy/climate-change-report/renewable-energy-climate-change-report/december-2009-newsletter/biochar---a-multitude-of-benefits
- Importance of indoor gardening. (2011, December 11). Retrieved from Landscape Designing:

http://ecoursesonline.iasri.res.in/mod/page/view.php?id=121818#:~:text=Indoor %20plants%20need%20not%20necessarily,be%20decorated%20with%20suitabl e%20plants.&text=Indoor%20gardening%20brings%20an%20intimate,and%20 enlivens%20the%20indoor%20environment

- Islam, R., & Siwar, C. (2012). The analysis of urban agriculture development in Malaysia. In *Advances in Environmental Biology*.
- KENTON, W. (2021, February 8). *Analysis of Variance (ANOVA)*. Retrieved from Investopedia: https://www.investopedia.com/terms/a/anova.asp
- Kitazawaseed. (n.d.). *Cabbage Seeds Pak Choi Jimao Choi Hybrid*. Retrieved from kitazawaseed: https://kitazawaseed.com/products/cabbage-seeds-pak-choi-jimao-choi-hybrid
- Landscaping, A. (2015, June 9). *Why Garden Plants Turn Yellow?* Retrieved from allentucklandscaping: https://www.allentucklandscaping.com/garden-plants-turn-yellow/
- Lauren Panoff. (2021, February 24). *healthline*. Retrieved from Jimao choy: Nutrition, Benefits, Risks, and How to Eat It: https://www.healthline.com/nutrition/bokchoy-nutrition
- Lehmann, J., Da Silva, J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. *Plant and Soil*. https://doi.org/10.1023/A:1022833116184
- Lovett, G. M., Christenson, L. M., Groffman, P. M., Jones, C. G., Hart, J. E., & Mitchell, M. J. (2002). Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. *BioScience*, 52(4), 335-341.
- Manar Arica Alattar, F. N. (2016, March 7). Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn

plants (*Zea mays*). Retrieved from Plant Science Today: https://horizonepublishing.com/journals/index.php/PST/article/view/179/122

- Mohamed Haris, N. B., Garrod, G., Gkartzios, M., & Proctor, A. (2018). *The decision to adopt organic practices in Malaysia; a mix-method approach* (No. 2111-2018-4134).
- Mohamad, S. S., Rusdi, S. D., & Hashim, N. H. (2014). Organic Food Consumption among Urban Consumers: Preliminary Results. *Proceedia - Social and Behavioral Sciences*. https://doi.org/10.1016/j.sbspro.2014.04.059
- Mulcahy, D. N., Mulcahy, D. L., & Dietz, D. (2013). Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. *Journal of Arid Environments*. https://doi.org/10.1016/j.jaridenv.2012.07.012
- Natarajan, T., & Kothandaraman, A. (2018). Standardization of Growbag Media with Nutriseed Pack Fertilization for Tomato Crop under Matric Suction Irrigation. *Current Agriculture Research Journal*. https://doi.org/10.12944/carj.6.3.25
- Pandian, K., Subramaniayan, P., Gnasekaran, P., & Chitraputhirapillai, S. (2016). Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. *Archives of Agronomy and Soil Science*. https://doi.org/10.1080/03650340.2016.1139086
- Partey, S. T., Preziosi, R. F., & Robson, G. D. (2014). Short-Term Interactive Effects of Biochar, Green Manure, and Inorganic Fertilizer on Soil Properties and Agronomic Characteristics of Maize. *Agricultural Research*. https://doi.org/10.1007/s40003-014-0102-1
- Perry, L. (n.d.). Ph for the garden. Retrieved February 18, 2022, from http://pss.uvm.edu/ppp/pubs/oh34.htm

Plantingfertilizer. (2021). What do nitrogen phosphorus and potassium do for plants? Retrieved from plantingfertilizer: https://plantingfertilizer.com/what-donitrogen-phosphorus-and-potassium-do-forplants/#:~:text=Nitrogen%2C%20phosphorus%20and%20potassium%2C%20or %20NPK%2C%20are%20the,plants%20absorb%20more%20nitrogen%20than %20any%20other%20element

- Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In *Biochar - An Imperative Amendment for Soil and the Environment*. https://doi.org/10.5772/intechopen.82151
- Rigby, D., & Cáceres, D. (2001). Organic farming and the sustainability of agricultural systems. *Agricultural Systems*. https://doi.org/10.1016/S0308-521X(00)00060-3

- SaraBortolini, L. I. (2020, July 20). *Hermetia illucens (L.) larvae as chicken manure management tool for circular economy*. Retrieved from sciencedirect: https://www.sciencedirect.com/science/article/pii/S0959652620313366
- Sciencebuddies. (n.d.). *Measuring Plant Growth*. Retrieved from sciencebuddies: https://www.sciencebuddies.org/science-fair-projects/references/measuringplant-growth
- Sciencing. (2022). *What Is the Tukey HSD Test?* Retrieved from sciencing: https://sciencing.com/what-is-the-tukey-hsd-test-12751748.htmL
- Siraj, M. (2018, MARCH 30). *Cocopeat for your home garden*. Retrieved from The Hindu: https://www.thehindu.com/life-and-style/homes-and-gardens/cocopeat-for-your-home-garden/article23393105.ece
- Sistrunk, T. (n.d.). *Insect frass*. Organic Materials Review Institute. Retrieved February 18, 2022, from https://www.omri.org/insect-frass
- Solaiman, Z. M., Shafi, M. I., Beamont, E., & Anawar, H. M. (2020). Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. *Agriculture (Switzerland)*. https://doi.org/10.3390/agriculture10100480
- Somasundram, C., Razali, Z., & Santhirasegaram, V. (2016). A review on organic food production in Malaysia. *Horticulturae*, 2(3), 12
- Song, S., Ee, A. W. L., Tan, J. K. N., Cheong, J. C., Chiam, Z., Arora, S., Lam, W. N., & Tan, H. T. W. (2021). Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential. *Journal of Cleaner Production*. https://doi.org/10.1016/j.jclepro.2020.125664
- Spears, S. (2018, October 15). *What is biochar?* Regeneration International. Retrieved February 18, 2022, from https://regenerationinternational.org/2018/05/16/what-is-biochar/
- Spironello, A., Quaggio, J. A., Teixeira, L. A. J., Furlani, P. R., & Sigrist, J. M. M. (2004). Pineapple yield and fruit quality effected by NPK fertilization in a tropical soil. *Revista Brasileira de Fruticultura*. https://doi.org/10.1590/s0100-29452004000100041

Startupback. (2021). 5 Major Problems of Agriculture and their Solutions. Retrieved from Startupback: https://startupback.com/problems-of-agriculture-solutions/#:~:text=Insects%2C%20poverty%2C%20and%20lack%20of%20irrigat

ion%20facilities%20are,farmers%20who%20lack%20basic%20financial%20and %20technical%20support

- Taylorfrancis. (2016). Organic Farming and Sustainable Agriculture in Malaysia: Organic Farmers' Challenges Towards Adoption. Retrieved from taylorfrancis: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315365800-18/organic-farming-sustainable-agriculture-malaysia-organic-farmerschallenges-towards-adoption
- The Hindu. (2018, March 30). *COCOPEAT for your home garden*. Return to frontpage. Retrieved February 18, 2022, from https://www.thehindu.com/life-andstyle/homes-and-gardens/cocopeat-for-your-home-garden/article23393105.ece
- Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. In *Nature*. https://doi.org/10.1038/nature01014
- Tiraieyari, N., Hamzah, A., & Samah, B. A. (2017). Organic farming and sustainable agriculture in Malaysia: Organic farmers' challenges towards adoption. In *Sustainable Development of Organic Agriculture: Historical Perspectives*. https://doi.org/10.1201/9781315365800
- Tran G., G. C. (2016, OCTOBER 20). *Feedipedia*. Retrieved from Black soldier fly larvae (Hermetia illucens): https://www.feedipedia.org/node/16388
- Unep. (2020, November 9). *Fertilizers: challenges and solutions*. Retrieved from unep: https://www.unep.org/news-and-stories/story/fertilizers-challenges-and-solutions
- Zhang, X., Qu, J., Li, H., La, S., Tian, Y., & Gao, L. (2020). Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region. *Geoderma*. https://doi.org/10.1016/j.geoderma.2019.114170
- Zahn, N. H. (2017). The effects of insect frass created by Hermetia illucens on Spring onion growth and soil fertility. *University of Stirling*.

Figure 4.9: Block of pressed cocopeat was immersed in water

Figure 4.10: Process of drying coco peat

Figure 4.11: Seeds germinated after 4 days

Figure 4.13: Weighing coco peat

Figure 4.14: Plants after transfer into polybag

Figure 4.15: Plants on week 1

Figure 4.16: Checking pH of the soil

Figure 4.17: Plants on week 2

Figure 4.18: Plants on week 3 (harvest stage)

Figure 4.19: Setting up plants before checking dry weight using oven

Figure 4.21: Weighing sample for ashing

Figure 4.22: Samples in furnace (ashing)

Figure 4.23: Kjeldahl method (digestion)

Figure 4.24: Kjeldahl method (distillation)

Figure 4.25: Preparation of base for titration (Kjeldahl method)

Figure 4.26: Colour development method

Figure 4.27: Process of identifying potassium content using Horiba LAQUAtwin

			TIN	Descri	ptives		T	
Height	in cm	JI	V L V	L'AL	Λ		1	
					95% Confidenc	e Interval		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
то	3	6.800	2.2068	1.2741	1.318	12.282	4.5	8.9
T1	3	13.067	2.7025	1.5603	6.353	19.780	10.3	15.7
T2	3	14.433	1.4364	.8293	10.865	18.002	12.8	15.5
Т3	3	10.667	3.8188	2.2048	1.180	20.153	6.5	14.0
T4	3	12.467	1.4503	.8373	8.864	16.069	11.0	13.9
T5	3	5.967	1.8502	1.0682	1.370	10.563	4.1	7.8
T6	3	15.067	1.5044	.8686	11.329	18.804	13.5	16.5
T7	3	14.267	1.5373	.8876	10.448	18.086	12.5	15.3
Total	24	11.592	3.8168	.7791	9.980	13.203	4.1	16.5

Table 4.11: Tukey HSD test of descriptives

Fresh Wei	ight in g							
Т0	3	.3033	.27025	.15603	3680	.9747	.10	.61
T1	3	17.2367	4.90806	2.83367	5.0444	29.4290	13.20	22.70
T2	3	13.0000	3.75899	2.17025	3.66 <mark>22</mark>	22.3378	9.40	16.90
T3	3	10.2000	9.10000	5.25389	-12 <mark>.4057</mark>	32.8057	1.70	19.80
T4	3	10.5667	3.29292	1.90117	2.3866	18.7467	6.80	12.90
T5	3	.2833	.18771	.10837	1830	.7496	.08	.45
T6	3	10.9333	.95044	.54874	8.5723	13.2944	10.00	11.90
T7	3	11.4333	1.96299	1.13333	6.5570	16.3097	10.30	13.70
Total	24	9.2446	6.65636	1.35872	6.4338	12.0553	.08	22.70
Dry Weigl	nt in g		1		I	1	I	
T0	3	.034267	.0253338	.0146265	028666	.097199	.0114	.0615
T1	3	1.142833	.2700178	.1558949	.472072	1.813595	.9552	1.4523
T2	3	1.007100	.1954945	.1128688	.521465	1.492735	.8543	1.2274
Т3	3	.708933	.6350778	.3666624	868687	2.286554	.1185	1.3808
T4	3	.753600	.2685617	.1550542	.086456	1.420744	.4471	.9477
T5	3	.036533	.0208447	.0120347	015248	.088315	.0135	.0541
T6	3	1.252100	.6382849	.3685140	333488	2.837688	.8420	1.9875
T7	3	.976733	.1201121	.0693468	.678358	1.275108	.8421	1.0729
Total	24	.739013	.5379872	.1098162	.511840	.966185	.0114	1.9875
LEAVES		TBIT	13.7	11.1	101	CT I T		
ТО	3	3.67	.577	.333	2.23	5.10	3	4
T1	3	5.00	1.000	.577	2.52	7.48	4	6
T2	3	5.00	.000	.000	5.00	5.00	5	5
Т3	3	5.67	2.082	1.202	.50	10.84	4	8
T4	3	4.33	.577	.333	2.90	5.77	4	5
Т5	3	3.33	1.155	.667	.46	6.20	2	4
Тб	3	6.67	1.155	.667	3.80	9.54	6	8
T7	3	5.00	1.000	.577	2.52	7.48	4	6
Total	24	4.83	1.373	.280	4.25	5.4 1	2	8
pH	- K		- 4				I	
T0	3	6.400	.0000	.0000	6.400	6.400	6.4	6.4
T1	3	6.467	.4163	.2404	5.432	7.501	6.0	6.8
T2	3	6.600	.0000	.0000	6.600	6.600	6.6	6.6

Т3		3	6.133	.5774	.3333	4.699	7.568	5.8	6.8
T4		3	6.400	.4000	.2309	5.406	7.394	6.0	6.8
T5		3	6.533	.2309	.1333	5.960	7.107	6.4	6.8
T6		3	6.333	.4619	.2667	5.186	7.481	5.8	6.6
T7		3	6.600	.0000	.0000	6.600	6.600	6.6	6.6
Total	2	24	6.433	.3212	.0656	6.298	6.569	5.8	6.8

Т0	3	1.367	.7371	.4256	464	3.198	.8	2.2
T1	3	5.500	2.3065	1.3317	230	11.230	3.1	7.3
T2	3	5.133	1.6289	.9404	1.087	9.180	4.0	7.0
Т3	3	5.133	.7095	.4096	3.371	6.896	4.5	5.9
T4	3	5.433	2.1455	1.2387	.104	10.763	4.0	7.9
T5	3	1.200	.4359	.2517	.117	2.283	.9	1.7
T6	3	2.400	.4583	.2646	1.262	3.538	1.9	2.8
T7	3	2.200	.3606	.2082	1.304	3.096	1.9	2.6
Biochar	3	2.167	.4163	.2404	1.132	3.201	1.7	2.5
Frass	3	19.900	1.6703	.9644	15.751	24.049	18.4	21.7
Total	30	5.043	5.4216	.9899	3.019	7.068	.8	21.7

Phosphorus								
ТО	3	268.5367	399.65884	230.7431 4	-724.2709	1261.3443	33.82	730.00
T1	3	685.0000	685.87535	395.9903 2	-1018.8088	2388.8088	20.00	1390.00
T2	3	286.6667	129.06717	74.51696	-33.9539	607.2873	200.00	435.00
T3	3	80.5567	10.84572	6.26178	53.6144	107.4989	70.00	91.67
T4	3	384.1667	223.21981	128.8760 2	-170.3421	938.6754	180.00	622.50
Т5	3	341.2967	479.61416	276.9053	-850.1310	1532.7243	55.00	895.00
Т6	3	274.1667	212.28420	122.5623	-253.1765	<u>801.50</u> 99	75.00	497.50
T7	3	413.3367	146.82756	84.77093	48.5968	778.0766	311.67	581.67
Biochar	3	273.8900	109.56321	63.25635	1.7199	546.0601	175.00	391.67
Frass	3	546.6667	590.06985	340.6769 8	-919.1481	2012.4814	111.67	1218.33
Total	30	355.4283	345.37080	63.05579	226.4648	484.3919	20.00	1390.00

Potassium	in ppm								
Т0		3	152333.3	69255.565	39984.71	-19707.03	324373.69	97000	230000
T1		3	350000.0	108166.538	62449.98	81299.42	618700.58	260000	470000
T2		3	193333.3 3	15275.252	8819.171	155387.50	231279.16	180000	210000
Т3		3	263333.3 3	102632.029	59254.62 9	8381.24	518285.43	150000	350000
T4		3	560000.0 0	204205.779	117898.2 61	52724.72	1067275.28	400000	790000
Т5		3	186666.6 7	90737.717	52387.44 5	-38738.32	412071.65	120000	290000
Т6		3	240000.0 0	112694.277	65064.07 1	-39948.10	519948.10	170000	370000
T7		3	296666.6 7	263881.286	152351.9 32	-358850.79	952184.12	120000	600000
Biochar		3	530000.0 0	204205.779	117898.2 61	22724.72	1037275.28	370000	760000
Frass		3	933333.3 3	32145.503	18559.21 5	853479.48	1013187.19	910000	970000
Total	3	30	370566.6 7	261324.172	47711.04 8	272986.62	468146.72	97000	970000

Table 4.12: Tukey HSD test of multiple comparisons for height

Dependent Va	riable: Height	in cm		ZC.			
			Mean			95% Confide	ence Interval
	(I) Treatment	(J) Treatment	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	T0	T1	-6.2667*	1.8022	.049	-12.506	027
		T2	-7.6333*	1.8022	.011	-13.873	-1.394
		T3	-3.8667	1.8022	.429	-10.106	2.373
		T4	-5.6667	1.8022	.090	-11.906	.573
		T5	.8333	1.8022	1.000	-5.406	7.073
		T6	-8.2667*	1.8022	.006	-14.506	-2.027
		Τ7	-7.4667*	1.8022	.014	-13.706	-1.227

T1	ТО	6.2667*	1.8022	.049	.027	12.506
	T2	-1.3667	1.8022	.993	-7.606	4.873
	T3	2.4000	1.8022	.874	-3.839	8.639
	<u>T</u> 4	.6000	1.8022	1.000	-5.639	6.839
	T5	7.1000*	1.8022	.020	.861	13.339
	T6	-2.0000	1.8022	.945	-8.239	4.239
	T7	-1.2000	1.8022	.997	-7.439	5.039
T2	T0	7.6333*	1.8022	.011	1.394	13.873
	T1	1.3667	1.8022	.993	-4.873	7.606
	Т3	3.7667	1.8022	.460	-2.473	10.006
	T4	1.9667	1.8022	.950	-4.273	8.206
	T5	8.4667*	1.8022	.005	2.227	14.706
	T6	6333	1.8022	1.000	-6.873	5.606
	T7	.1667	1.8022	1.000	-6.073	6.406
Т3	TO	3.8667	1.8022	.429	-2.373	10.106
	T1	-2.4000	1.8022	.874	-8.639	3.839
	T2	-3.7667	1.8022	.460	-10.006	2.473
	T4	-1.8000	1.8022	.968	-8.039	4.439
	T5	4.7000	1.8022	.222	-1.539	10.939
	T6	-4.4000	1.8022	.286	-10.639	1.839
	T7	-3.6000	1.8022	.512	-9.839	2.639
T4	T0	5.6667	1.8022	.090	573	11.906
	<u>T1</u>	6000	1.8022	1.000	-6.839	5.639
	T2	-1.9667	1.8022	.950	-8.206	4.273
	T3	1.8000	1.8022	.968	-4.439	8.039
	Т5	6.5000*	1.8022	.038	.261	12.739
	Т6	-2.6000	1.8022	.825	-8.839	3.639
Λ	T7	-1.8000	1.8022	.968	-8.039	4.439
T5	Т0	8333	1.8022	1.000	-7.073	5.406
	T1	-7.1000*	1.8022	.020	-13.339	861
	T2	-8.4667*	1.8022	.005	-14.706	-2.227
	T3	-4.7000	1.8022	.222	-10.939	1.539
	T4	-6.5000*	1.8022	.038	-12.739	261
	T6	-9.1000*	1.8022	.002	-15.339	-2.861
	T7	-8.3000*	1.8022	.005	-14.539	-2.061
T6	Т0	8.2667*	1.8022	.006	2.027	14.506

		T1	2.0000	1.8022	.945	-4.239	8.239
		T2	.6333	1.8022	1.000	-5.606	6.873
		T3	4.4000	1.8022	.286	-1.839	10.639
		T4	2.6000	1.8022	.825	-3.639	8.839
		T5	9.1000*	1.8022	.002	2.861	15.339
		T7	.8000	1.8022	1.000	-5.439	7.039
	T7	T0	7.4667*	1.8022	.014	1.227	13.706
		<u>T1</u>	1.2000	1.8022	.997	-5.039	7.439
		T2	1667	1.8022	1.000	-6.406	6.073
		Т3	3.6000	1.8022	.512	-2.639	9.839
		<u>T</u> 4	1.8000	1.8022	.968	-4.439	8.039
		T5	8.3000*	1.8022	.005	2.061	14.539
		Т6	8000	1.8022	1.000	-7.039	5.439
LSD	Т0	T1	-6.2667*	1.8022	.003	-10.087	-2.446
		T2	-7.6333*	1.8022	.001	-11.454	-3.813
		T3	-3.8667*	1.8022	.048	-7.687	046
		T4	-5.6667*	1.8022	.006	-9.487	-1.846
		T5	.8333	1.8022	.650	-2.987	4.654
		Т6	-8.2667*	1.8022	.000	-12.087	-4.446
		Τ7	-7.4667*	1.8022	.001	-11.287	-3.646
	T1	Т0	6.2667*	1.8022	.003	2.446	10.087
		T2	-1.3667	1.8022	.459	-5.187	2.454
		<u>T3</u>	2.4000	1.8022	.202	-1.420	6.220
		T4	.6000	1.8022	.744	-3.220	4.420
		T5	7.1000^{*}	1.8022	.001	3.280	10.920
		Тб	-2.0000	1.8022	.283	-5.820	1.820
		Τ7	-1.2000	1.8022	.515	-5.020	2.620
	T2	Т0	7.6333*	1.8022	.001	3.813	11.454
		<u>T1</u>	1.3667	1.8022	.459	-2.454	5.187
		T3	3.7667	1.8022	.053	054	7.587
		T4	1.9667	1.8022	.291	-1.854	5.787
		T5	8.4667*	1.8022	.000	4.646	12.287
		T6	6333	1.8022	.730	-4.454	3.187
		Τ7	.1667	1.8022	.927	-3.654	3.987
	Т3	Т0	3.8667*	1.8022	.048	.046	7.687
		T1	-2.4000	1.8022	.202	-6.220	1.420

	T2	-3.7667	1.8022	.053	-7.587	.054
	<u>T</u> 4	-1.8000	1.8022	.333	-5.620	2.020
	<u>T5</u>	4.7000*	1.8022	.019	.880	8.520
	T6	-4.4000*	1.8022	.027	-8.220	580
	T7	-3.6000	1.8022	.063	-7.420	.220
T4	T0	5.6667*	1.8022	.006	1.846	9.487
	<u>T1</u>	6000	1.8022	.744	-4.420	3.220
	T2	-1.9667	1.8022	.291	-5.787	1.854
	T3	1.8000	1.8022	.333	-2.020	5.620
	T5	6.5000*	1.8022	.002	2.680	10.320
	T6	-2.6000	1.8022	.168	-6.420	1.220
	T7	-1.8000	1.8022	.333	-5.620	2.020
Т5	T0	8333	1.8022	.650	-4.654	2.987
	T1	-7.1000*	1.8022	.001	-10.920	-3.280
	T2	-8.4667*	1.8022	.000	-12.287	-4.646
	<u>T3</u>	-4.7000*	1.8022	.019	-8.520	880
	<u>T</u> 4	-6.5000*	1.8022	.002	-10.320	-2.680
	T6	-9.1000*	1.8022	.000	-12.920	-5.280
	T7	-8.3000*	1.8022	.000	-12.120	-4.480
Тб	TO	8.2667*	1.8022	.000	4.446	12.087
	<u>T1</u>	2.0000	1.8022	.283	-1.820	5.820
	<u>T2</u>	.6333	1.8022	.730	-3.187	4.454
	<u>T3</u>	4.4000*	1.8022	.027	.580	8.220
	<u>T4</u>	2.6000	1.8022	.168	-1.220	6.420
	T5	9.1000*	1.8022	.000	5.280	12.920
	Τ7	.8000	1.8022	.663	-3.020	4.620
Т7	TO	7.4667*	1.8022	.001	3.646	11.287
	<u>T1</u>	1.2000	1.8022	.515	-2.620	5.020
	<u>T2</u>	1667	1.8022	.927	-3.987	3.654
	T3	3.6000	1.8022	.063	220	7.420
	T4	1.8000	1.8022	.333	-2.020	5.620
	T5	8.3000*	1.8022	.000	4.480	12.120
	Т6	8000	1.8022	.663	-4.620	3.020

*. The mean difference is significant at the 0.05 level.

68

Dependent Va	ariable: Fresh	weight in g					
			Mean			95% Confid	ence Interval
			Difference (I-				
	(I) Treatment	(J) Treatment	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	T1	-16.93333*	3.37561	.002	-28.6202	-5.2464
		T2	-12.69667*	3.37561	.028	-24.3836	-1.0098
		Т3	-9.89667	3.37561	.130	-21.5836	1.7902
		T4	-10.26333	3.37561	.108	-21.9502	1.4236
		T5	.02000	3.37561	1.000	-11.6669	11.7069
		Т6	-10.63000	3.37561	.089	-22.3169	1.0569
		Т6	-11.13000	3.37561	.068	-22.8169	.5569
	T1	Т0	16.93333*	3.37 <mark>56</mark> 1	.002	5.2464	28.6202
		T2	4.23667	3.37561	.902	-7.4502	15.9236
		T3	7.03667	3.37561	.463	-4.6502	18.7236
		T4	6.67000	3.37561	.525	-5.0169	18.3569
		T5	16.95333*	3.37561	.002	5.2664	28.6402
		T 6	6.30333	3.37561	.589	-5.3836	17.9902
		Т6	5.80333	3.37561	.676	-5.8836	17.4902
	T2	Т0	12.69667*	3.37561	.028	1.0098	24.3836
		T1	-4.23667	3.37561	.902	-15.9236	7.4502
		T3	2.80000	3.37561	.988	-8.8869	14.4869
		T4	2.43333	3.37561	.995	-9.2536	14.1202
		T5	12.71667*	3.37561	.028	1.0298	24.4036
		Т6	2.06667	3.37561	.998	-9.6202	13.7536
		Т6	1.56667	3.37561	1.000	-10.1202	13.2536
	Т3	TO	9.89667	3.37561	.130	-1.7902	21.5836
		T1	-7.03667	3.37561	.463	-18.7236	4.6502
		T2	-2.80000	3.37561	.988	-14.4869	8.8869
		T4	36667	3.37561	1.000	-12.0536	11.3202
		Т5	9.91667	3.37561	.129	-1.7702	21.6036
		Т6	73333	3.37561	1.000	-12.4202	10.9536
		Т6	-1.23333	3.37561	1.000	-12.9202	10.4536
	T4	Т0	10.26333	3.37561	.108	-1.4236	21.9502
		T1	-6.67000	3.37561	.525	-18.3569	5.0169
		T2	-2.43333	3.37561	.995	-14.1202	9.2536

Table 4.13: Tukey HSD test of multiple comparisons for fresh weight

Dependent Variable: Fresh Weight in g

		T3	.36667	3.37561	1.000	-11.3202	12.0536
		T5	10.28333	3.37561	.107	-1.4036	21.9702
		T 6	36667	3.37561	1.000	-12.0536	11.3202
		T6	86667	3.37561	1.000	-12.5536	10.8202
	T5	TO	02000	3.37561	1.000	-11.7069	11.6669
		T1	-16.95333*	3.37561	.002	-28.6402	-5.2664
		T2	-12.71667*	3.37561	.028	-24.4036	-1.0298
		T3	-9.91667	3.37561	.129	-21.6036	1.7702
		T4	-10.28333	3.37561	.107	-21.9702	1.4036
		T6	-10.65000	3.37561	.088	-22.3369	1.0369
		Тб	-11.15000	3.37561	.067	-22.8369	.5369
	T6	TO	10.63000	3.37561	.089	-1.0569	22.3169
		T1	-6.30333	3.37561	.589	-17.9902	5.3836
		T2	-2.06667	3.37561	.998	-13.7536	9.6202
		T 3	.73333	3.37561	1.000	-10.9536	12.4202
		T4	.36667	3.37561	1.000	-11.3202	12.0536
		T5	10.65000	3.37561	.088	-1.0369	22.3369
		T6	50000	3.37561	1.000	-12.1869	11.1869
	T7	ТО	11.13000	3.37561	.068	5569	22.8169
		T1	-5.80333	3.37561	.676	-17.4902	5.8836
		T2	-1.56667	3.37561	1.000	-13.2536	10.1202
		Т3	1.23333	3.37561	1.000	-10.4536	12.9202
		T4	.86667	3.37561	1.000	-10.8202	12.5536
		T5	11.15000	3.37561	.067	5369	22.8369
		Т6	.50000	3.37561	1.000	-11.1869	12.1869
LSD	TO	T1	-16.93333*	3.37561	.000	-24.0893	-9.7773
		T2	-12.69667*	3.37561	.002	-19.8527	-5.5407
		Т3	-9.89667*	3.37561	.010	-17.0527	-2.7407
		T4	-10.26333*	3.37561	.008	-17.4193	-3.1073
		Т5	.02000	3.37561	.995	-7.1360	7.1760
		Тб	-10.63000*	3.37561	.006	-17.7860	-3.4740
		T6	-11.13000*	3.37561	.005	-18.2860	-3.9740
	T1	TO	16.93333*	3.37561	.000	9.7773	24.0893
		T2	4.23667	3.37561	.227	-2.9193	11.3927
		T3	7.03667	3.37561	.053	1193	14.1927
		T4	6.67000	3.37561	.066	4860	13.8260

I	\triangleleft
	Ļ

	T 5	16.95333*	3.37561	.000	9.7973	24.1093
	T 6	6.30333	3.37561	.080	8527	13.4593
	T6	5.80333	3.37561	.105	-1.3527	12.9593
T2	ТО	12.69667*	3.37561	.002	5.5407	19.8527
	<u>T1</u>	-4.23667	3.37561	.227	-11.3927	2.9193
	T3	2.80000	3.37561	.419	-4.3560	9.9560
	T4	2.43333	3.37561	.481	-4.7227	9.5893
	T5	12.71667*	3.37561	.002	5.5607	19.8727
	T6	2.06667	3.37561	.549	-5.0893	9.2227
	T6	1.56667	3.37561	.649	-5.5893	8.7227
T3	ТО	9.89667*	3.37561	.010	2.7407	17.0527
	T1	-7.03667	3.37561	.053	-14.1927	.1193
	T2	-2.80000	3.37561	.419	-9.9560	4.3560
	T4	36667	3.37561	.915	-7.5227	6.7893
	T5	9.91667*	3.37561	.010	2.7607	17.0727
	T6	73333	3.37561	.831	-7.8893	6.4227
	T6	-1.23333	3.37561	.720	-8.3893	5.9227
T4	TO	10.26333*	3.37561	.008	3.1073	17.4193
	T1	-6.67000	3.37561	.066	-13.8260	.4860
	T2	-2.43333	3.37561	.481	-9.5893	4.7227
	Т3	.36667	3.37561	.915	-6.7893	7.5227
	T5	10.28333*	3.37561	.008	3.1273	17.4393
	Т6	36667	3.37561	.915	-7.5227	6.7893
	Т6	86667	3.37561	.801	-8.0227	6.2893
T5	T0	02000	3.37561	.995	-7.1760	7.1360
	T1	-16.95333*	3.37561	.000	-24.1093	-9.7973
	T2	-12.71667*	3.37561	.002	-19.8727	-5.5607
	Т3	-9.91667*	3.37561	.010	-17.0727	-2.7607
	T4	-10.28333*	3.37561	.008	-17.4393	-3.1273
	Т6	-10.65000*	3.37561	.006	-17.8060	-3.4940
	T6	-11.15000*	3.37561	.004	-18.3060	-3.9940
Т6	T0	10.63000*	3.37561	.006	3.4740	17.7860
	T1	-6.30333	3.37561	.080	-13.4593	.8527
	T2	-2.06667	3.37561	.549	-9.2227	5.0893
	T3	.73333	3.37561	.831	-6.4227	7.8893
	T4	.36667	3.37561	.915	-6.7893	7.5227

	T5	10.65000*	3.37561	.006	3.4940	17.8060
	T6	50000	3.37561	.884	-7.6560	6.6560
Т7	T0	11.13000*	3.37561	.005	3.9740	18.2860
	T 1	-5.80333	3.37561	.105	-12.9593	1.3527
	T2	-1.56667	3.37561	.649	-8.7227	5.5893
	T3	1.23333	3.37561	.720	-5.9227	8.3893
	T4	.86667	3.37561	.801	-6.2893	8.0227
	T5	11.15000*	3.37561	.004	3.9940	18.3060
	Т6	.50000	3.37561	.884	-6.6560	7.6560

Table 4.14: Tukey HSD test of multiple comparisons for dry weight

Dependent Variable: Dry Weight in g

			Mean			95% Confide	ence Interval
			Difference (I-				
	(I) Treatement	(J) Treatement	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	T1	-1.1085667*	.2900414	.025	-2.112734	104400
		T2	9728333	.2900414	.061	-1.977000	.031334
		T3	6746667	.2900414	.338	-1.678834	.329500
		T4	7193333	.2900414	.270	-1.723500	.284834
		T5	0022667	.2900414	1.000	-1.006434	1.001900
	<u> </u>	Т6	-1.2178333*	.2900414	.012	-2.222000	213666
		Т6	9424667	.2900414	.074	-1.946634	.061700
	TI	Т0	1.1085667*	.2900414	.025	.104400	2.112734
		T2	.1357333	.2900414	1.000	868434	1.139900
		T3	.4339000	.2900414	.799	570267	1.438067
		T4	.3892333	.2900414	.870	614934	1.393400
		T5	1.1063000*	.2900414	.026	.102133	2.110467
		Т6	1092667	.2900414	1.000	-1.113434	.894900
	IZ I	T6	.1661000	.2900414	.999	838067	1.170267
	T2	T0	.9728333	.2900414	.061	031334	1.977000
		T1	1357333	.2900414	1.000	-1.139900	.868434
		Т3	.2981667	.2900414	.963	706000	1.302334
		T4	.2535000	.2900414	.985	750667	1.257667

	T5	.9705667	.2900414	.062	033600	1.974734
	T 6	2450000	.2900414	.987	-1.249167	.759167
	T 6	.0303667	.2900414	1.000	973800	1.034534
Т3	T0	.6746667	.2900414	.338	329500	1.678834
	T1	4339000	.2900414	.799	-1.438067	.570267
	T2	2981667	.2900414	.963	-1.302334	.706000
	T4	0446667	.2900414	1.000	-1.048834	.959500
	T5	.6724000	.2900414	.341	331767	1.676567
	T6	5431667	.2900414	.586	-1.547334	.461000
	T6	2678000	.2900414	.979	-1.271967	.736367
T4	T0	.7193333	.2900414	.270	284834	1.723500
	T1	3892333	.2900414	.870	-1.393400	.614934
	T2	2535000	.2900414	.985	-1.257667	.750667
	T3	.0446667	.2900414	1.000	959500	1.048834
	T5	.7170667	.2900414	.273	287100	1.721234
	T6	4985000	.2900414	.677	-1.502667	.505667
	T6	2231333	.2900414	.993	-1.227300	.781034
T5	T0	.0022667	.2900414	1.000	-1.001900	1.006434
	T1	-1.1063000*	.2900414	.026	-2.110467	102133
	T2	9705667	.2900414	.062	-1.974734	.033600
	T3	6724000	.2900414	.341	-1.676567	.331767
	T4	7170667	.2900414	.273	-1.721234	.287100
	Тб	-1.2155667*	.2900414	.012	-2.219734	211400
	Т6	9402000	.2900414	.075	-1.944367	.063967
Тб	Т0	1.2178333*	.2900414	.012	.213666	2.222000
	T1	.1092667	.2900414	1.000	894900	1.113434
	T2	.2450000	.2900414	.987	759167	1.249167
	Т3	.5431667	.2900414	.586	461000	1.547334
	T4	.4985000	.2900414	.677	505667	1.502667
	T5	1.2155667*	.2900414	.012	.211400	2.219734
	Тб	.2753667	.2900414	.976	728800	1.279534
Τ7	T0	.9424667	.2900414	.074	061700	1.946634
	T1	1661000	.2900414	.999	-1.170267	.838067
	T2	0303667	.2900414	1.000	-1.034534	.973800
	T3	.2678000	.2900414	.979	736367	1.271967
	T4	.2231333	.2900414	.993	781034	1.227300

		T5	.9402000	.2900414	.075	063967	1.944367
		T6	2753667	.2900414	.976	-1.279534	.728800
LSD	Т0	T1	-1.1085667*	.2900414	.002	-1.723427	493706
		T2	9728333*	.2900414	.004	-1.587694	357973
		T3	6746667*	.2900414	.033	-1.289527	059806
		T4	7193333*	.2900414	.025	-1.334194	104473
		T5	0022667	.2900414	.994	617127	.612594
		T6	-1.21783 <mark>33</mark> *	.2900414	.001	-1.832694	602973
		Т6	9424667*	.2900414	.005	-1.557327	327606
	T1	ТО	1.1085667*	.2900414	.002	.493706	1.723427
		T2	.1357333	.2900414	.646	479127	.750594
		T3	.4339000	.2900414	.154	180960	1.048760
		T4	.3892333	.2900414	.198	225627	1.004094
		T5	1.1063000*	.2900414	.002	.491440	1.721160
		T6	1092667	.2900414	.711	724127	.505594
		T6	.1661000	.2900414	.575	448760	.780960
	T2	TO	.9728333*	.2900414	.004	.357973	1.587694
		T 1	1357333	.2900414	.646	750594	.479127
		Т3	.2981667	.2900414	.319	316694	.913027
		T4	.2535000	.2900414	.395	361360	.868360
		T5	.9705667*	.2900414	.004	.355706	1.585427
		Тб	2450000	.2900414	.411	859860	.369860
		Т6	.0303667	.2900414	.918	584494	.645227
	Т3	TO	.6746667*	.2900414	.033	.059806	1.289527
		T1	4339000	.2900414	.154	-1.048760	.180960
		T2	2981667	.2900414	.319	913027	.316694
		T4	0446667	.2900414	.880	659527	.570194
		Т5	.6724000*	.2900414	.034	.057540	1.287260
		Т6	5431667	.2900414	.079	-1.158027	.071694
		T6	2678000	.2900414	.370	882660	.347060
	T4	TO	.7193333*	.2900414	.025	.104473	1.334194
		T1	3892333	.2900414	.198	-1.004094	.225627
		T2	2535000	.2900414	.395	868360	.361360
		Т3	.0446667	.2900414	.880	570194	.659527
		T5	.7170667*	.2900414	.025	.102206	1.331927
		T6	4985000	.2900414	.105	-1.113360	.116360

	T6	2231333	.2900414	.453	837994	.391727
T5	TO	.0022667	.2900414	.994	612594	.617127
	T1	-1.1063000*	.2900414	.002	-1.721160	491440
	T2	9705667*	.2900414	.004	-1.585427	355706
	<u>T3</u>	6724000*	.2900414	.034	-1.287260	057540
	<u>T4</u>	7170667*	.2900414	.025	-1.331927	102206
	<u>T6</u>	-1.2155667*	.2900414	.001	-1.830427	600706
	T6	9402000*	.2900414	.005	-1.555060	325340
Т6	TO	1.2178333*	.2900414	.001	.602973	1.832694
	T1	.1092667	.2900414	.711	505594	.724127
	T2	.2450000	.2900414	.411	369860	.859860
	<u>T3</u>	.5431667	.2900414	.079	071694	1.158027
	<u>T4</u>	.4985000	.2900414	.105	116360	1.113360
	<u>T5</u>	1.2155667*	.2900414	.001	.600706	1.830427
	T6	.2753667	.2900414	.357	339494	.890227
T7	TO	.9424667*	.2900414	.005	.327606	1.557327
	<u>T1</u>	1661000	.2900414	.575	780960	.448760
	<u>T2</u>	0303667	.2900414	.918	645227	.584494
	<u>T3</u>	.2678000	.2900414	.370	347060	.882660
	T4	.2231333	.2900414	.453	391727	.837994
	T5	.9402000*	.2900414	.005	.325340	1.555060
	T6	2753667	.2900414	.357	890227	.339494

Table 4.15: Tukey HSD test of multiple comparisons for number of leaves

Dependent ()		Lobidiniciillo					
			Mean			95% Confide	ence Interval
			Difference (I-				
	(I) Treatment	(J) Treatment	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	T1	-1.333	.898	.804	-4.44	1.77
		T2	-1.333	.898	.804	-4.44	1.77
		T3	-2.000	.898	.386	-5.11	1.11
		T4	667	.898	.994	-3.77	2.44
		T5	.333	.898	1.000	-2.77	3.44

Dependent Variable: LEAVESBRANCHES

H
\triangleleft
LL
Ω

	T6	-3.000	.898	.062	-6.11	.11
	T6	-1.333	.898	.804	-4.44	1.77
T1	TO	1.333	.898	.804	-1.77	4.44
	T2	.000	.898	1.000	-3.11	3.11
	T3	667	.898	.994	-3.77	2.44
	T4	.667	.898	.994	-2.44	3.77
	T5	1.667	.898	.595	-1.44	4.77
	T6	-1.667	.898	.595	-4.77	1.44
	T6	.000	.898	1.000	-3.11	3.11
T2	T0	1.333	.898	.804	-1.77	4.44
	T1	.000	.898	1.000	-3.11	3.11
	T3	667	.898	.994	-3.77	2.44
	T4	.667	.898	.994	-2.44	3.77
	T5	1.667	.898	.595	-1.44	4.77
	T6	-1.667	.898	.595	-4.77	1.44
	T6	.000	.898	1.000	-3.11	3.11
T3	TO	2.000	.898	.386	-1.11	5.11
	T1	.667	.898	.994	-2.44	3.77
	T2	.667	.898	.994	-2.44	3.77
	T4	1.333	.898	.804	-1.77	4.44
	T5	2.333	.898	.225	77	5.44
	T6	-1.000	.898	.944	-4.11	2.11
	T6	.667	.898	.994	-2.44	3.77
T4	T0	.667	.898	.994	-2.44	3.77
	T1	667	.898	.994	-3.77	2.44
	T2	667	.898	.994	-3.77	2.44
	T3	-1.333	.898	.804	-4.44	1.77
	T5	1.000	.898	.944	-2.11	4.11
	T6	-2.333	.898	.225	-5.44	.77
	Т6	667	.898	.994	-3.77	2.44
T5	TO	333	.898	1.000	-3.44	2.77
	T1	-1.667	.898	.595	-4.77	1.44
	T2	-1.667	.898	.595	-4.77	1.44
	T3	-2.333	.898	.225	-5.44	.77
	T4	-1.000	.898	.944	-4.11	2.11
	Т6	-3.333*	.898	.031	-6.44	23

		T6	-1.667	.898	.595	-4.77	1.44
	T6	T0	3.000	.898	.062	11	6.11
		T1	1.667	.898	.595	-1.44	4.77
		T2	1.667	.898	.595	-1.44	4.77
		T3	1.000	.898	.944	-2.11	4.11
		T4	2.333	.898	.225	77	5.44
		T5	3.333*	.898	.031	.23	6.44
		T6	1.667	.898	.595	-1.44	4.77
	Τ7	T0	1.333	.898	.804	-1.77	4.44
		T1	.000	.898	1.000	-3.11	3.11
		T2	.000	.898	1.000	-3.11	3.11
		T3	667	.898	.994	-3.77	2.44
		T4	.667	.898	.994	-2.44	3.77
		T5	1.667	.898	.595	-1.44	4.77
		T6	-1.667	.898	.595	-4.77	1.44
LSD	T0	<u>T1</u>	-1.333	.898	.157	-3.24	.57
		T2	-1.333	.898	.157	-3.24	.57
		T3	-2.000*	.898	.041	-3.90	10
		T4	667	.898	.468	-2.57	1.24
		T5	.333	.898	.715	-1.57	2.24
		Тб	-3.000*	.898	.004	-4.90	-1.10
		T6	-1.333	.898	.157	-3.24	.57
	T1	T0	1.333	.898	.157	57	3.24
		T2	.000	.898	1.000	-1.90	1.90
		T3	667	.898	.468	-2.57	1.24
		T4	.667	.898	.468	-1.24	2.57
		<u>T5</u>	1.667	.898	.082	24	3.57
		Тб	-1.667	.898	.082	-3.57	.24
		T6	.000	.898	1.000	-1.90	1.90
	T2	T0	1.333	.898	.157	57	3.24
		T1	.000	.898	1.000	-1.90	1.90
		<u>T3</u>	667	.898	.468	-2.57	1.24
		T4	.667	.898	.468	-1.24	2.57
		T5	1.667	.898	.082	24	3.57
		T6	-1.667	.898	.082	-3.57	.24
		T6	.000	.898	1.000	-1.90	1.90

Т3	TO	2.000*	.898	.041	.10	3.90
	<u>T1</u>	.667	.898	.468	-1.24	2.57
	T2	.667	.898	.468	-1.24	2.57
	T4	1.333	.898	.157	57	3.24
	T5	2.333*	.898	.019	.43	4.24
	T6	-1.000	.898	.282	-2.90	.90
	T6	.667	.898	.468	-1.24	2.57
T4	TO	.667	.898	.468	-1.24	2.57
	T1	667	.898	.468	-2.57	1.24
	T2	667	.898	.468	-2.57	1.24
	T3	-1.333	.898	.157	-3.24	.57
	T5	1.000	.898	.282	90	2.90
	T6	-2.333*	.898	.019	-4.24	43
	T6	667	.898	.468	-2.57	1.24
T5	TO	333	.898	.715	-2.24	1.57
	T1	-1.667	.898	.082	-3.57	.24
	T2	-1.667	.898	.082	-3.57	.24
	T3	-2.333*	.898	.019	-4.24	43
	T4	-1.000	.898	.282	-2.90	.90
	T6	-3.333*	.898	.002	-5.24	-1.43
	T6	-1.667	.898	.082	-3.57	.24
T6	_T0	3.000*	.898	.004	1.10	4.90
	T1	1.667	.898	.082	24	3.57
	T2	1.667	.898	.082	24	3.57
	Т3	1.000	.898	.282	90	2.90
	T4	2.333*	.898	.019	.43	4.24
	T5	3.333*	.898	.002	1.43	5.24
	T6	1.667	.898	.082	24	3.57
Τ7	T0	1.333	.898	.157	57	3.24
	T1	.000	.898	1.000	-1.90	1.90
	T2	.000	.898	1.000	-1.90	1.90
	T3	667	.898	.468	-2.57	1.24
	T4	.667	.898	.468	-1.24	2.57
	T5	1.667	.898	.082	24	3.57
	T6	-1.667	.898	.082	-3.57	.24

Dependent V	ariable: pH						
			Mean			95% Confid	ence Interval
			Difference (I-				
	(I) Treatment	(J) Treatment	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	T1	0667	.2789	1.000	-1.032	.899
		T2	2000	.2789	.995	-1.166	.766
		Т3	.2667	.2789	.975	699	1.232
		T4	.0000	.2789	1.000	966	.966
		Т5	1333	.2789	1.000	-1.099	.832
		T6	.0667	.2789	1.000	899	1.032
		Т6	2000	.2789	.995	-1.166	.766
	T1	ТО	.0667	.2789	1.000	899	1.032
		T2	1333	.2789	1.000	-1.099	.832
		T3	.3333	.2789	.922	632	1.299
		T4	.0667	.2789	1.000	899	1.032
		T5	0667	.2789	1.000	-1.032	.899
		Т6	.1333	.2789	1.000	832	1.099
		Т6	1333	.2789	1.000	-1.099	.832
	T2	T0	.2000	.2789	.995	766	1.166
		T1	.1333	.2789	1.000	832	1.099
		Т3	.4667	.2789	.703	499	1.432
		T4	.2000	.2789	.995	766	1.166
		T5	.0667	.2789	1.000	899	1.032
		T6	.2667	.2789	.975	699	1.232
	111	Т6	.0000	.2789	1.000	966	.966
	T3	TO	2667	.2789	.975	-1.232	.699
		T1	3333	.2789	.922	-1.299	.632
		T2	4667	.2789	.703	-1.432	.499
		T4	2667	.2789	.975	-1.232	.699
		T5	4000	.2789	.829	-1.366	.566
		Т6	2000	.2789	.995	-1.166	.766
		Т6	4667	.2789	.703	-1.432	.499

Table 4.16: Tukey HSD test of multiple comparisons for pH

	T4	TO	.0000	.2789	1.000	966	.966
		T1	0667	.2789	1.000	-1.032	.899
		T2	2000	.2789	.995	-1.166	.766
		T3	.2667	.2789	.975	699	1.232
		T5	1333	.2789	1.000	-1.099	.832
		Т6	.0667	.2789	1.000	899	1.032
		T6	2000	.2789	.995	-1.166	.766
	T5	T0	.1333	.2789	1.000	832	1.099
		T1	.0667	.2789	1.000	899	1.032
		T2	0667	.2789	1.000	-1.032	.899
		T3	.4000	.2789	.829	566	1.366
		T4	.1333	.2789	1.000	832	1.099
		T6	.2000	.2789	.995	766	1.166
		T6	0667	.2789	1.000	-1.032	.899
	Τ6	TO	0667	.2789	1.000	-1.032	.899
		T1	1333	.2789	1.000	-1.099	.832
		T2	2667	.2789	.975	-1.232	.699
		<u>T3</u>	.2000	.2789	.995	766	1.166
		T4	0667	.2789	1.000	-1.032	.899
		T5	2000	.2789	.995	-1.166	.766
		Тб	2667	.2789	.975	-1.232	.699
	Τ7	<u>T0</u>	.2000	.2789	.995	766	1.166
		<u>T1</u>	.1333	.2789	1.000	832	1.099
		T2	.0000	.2789	1.000	966	.966
		T3	.4667	.2789	.703	499	1.432
		T4	.2000	.2789	.995	766	1.166
		T5	.0667	.2789	1.000	899	1.032
	- A.4	T6	.2667	.2789	.975	699	1.232
LSD	Τ0	<u>T1</u>	0667	.2789	.814	658	.525
		T2	2000	.2789	.484	791	.391
		T3	.2667	.2789	.353	325	.858
		T4	.0000	.2789	1.000	591	.591
		_T5	1333	.2789	.639	725	.458
		T6	.0667	.2789	.814	525	.658
		Тб	2000	.2789	.484	791	.391
	T1	Τ0	.0667	.2789	.814	525	.658

	T2	1333	.2789	.639	725	.458
	<u>T3</u>	.3333	.2789	.249	258	.925
	T4	.0667	.2789	.814	525	.658
	T5	0667	.2789	.814	658	.525
	T6	.1333	.2789	.639	458	.725
	T6	1333	.2789	.639	725	.458
T2	T0	.2000	.2789	.484	391	.791
	T1	.1333	.2789	.639	458	.725
	T3	.4667	.2789	.114	125	1.058
	T4	.2000	.2789	.484	391	.791
	T5	.0667	.2789	.814	525	.658
	T6	.2667	.2789	.353	325	.858
	T6	.0000	.2789	1.000	591	.591
T3	T0	2667	.2789	.353	858	.325
	T1	3333	.2789	.249	925	.258
	T2	4667	.2789	.114	-1.058	.125
	T4	2667	.2789	.353	858	.325
	T5	4000	.2789	.171	991	.191
	<u>T6</u>	2000	.2789	.484	791	.391
	T6	4667	.2789	.114	-1.058	.125
T4	T0	.0000	.2789	1.000	591	.591
	T1	0667	.2789	.814	658	.525
	T2	2000	.2789	.484	791	.391
	T3	.2667	.2789	.353	325	.858
	T5	1333	.2789	.639	725	.458
	Т6	.0667	.2789	.814	525	.658
	T6	2000	.2789	.484	791	.391
T5	TO	.1333	.2789	.639	458	.725
	T1	.0667	.2789	.814	525	.658
	T2	0667	.2789	.814	658	.525
	T3	.4000	.2789	.171	191	.991
	T4	.1333	.2789	.639	458	.725
	T6	.2000	.2789	.484	391	.791
	T6	0667	.2789	.814	658	.525
T6	T0	0667	.2789	.814	658	.525
	T1	1333	.2789	.639	725	.458

		T2	2667	.2789	.353	858	.325
		T3	.2000	.2789	.484	391	.791
		T4	0667	.2789	.814	658	.525
		T5	2000	.2789	.484	791	.391
		T6	2667	.2789	.353	858	.325
T7	T7	Т0	.2000	.2789	.484	391	.791
		T1	.1333	.2789	.639	458	.725
		T2	.0000	.2789	1.000	591	.591
		T3	.4667	.2789	.114	125	1.058
		T4	.2000	.2789	.484	391	.791
		T5	.0667	.2789	.814	525	.658
		T6	.2667	.2789	.353	325	.858

Table 4.17: Tukey HSD test of multiple comparisons for nitrogen

		Mean				95% Confide	ence Interval
			Difference (I-				
	(I) Treatment	(J) Treatment	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	2	-4.1333*	1.0682	.025	-7.916	351
		3	-3.7667	1.0682	.052	-7.549	.016
		4	-3.7667	1.0682	.052	-7.549	.016
		5	-4.0667*	1.0682	.029	-7.849	284
		6	.1667	1.0682	1.000	-3.616	3.949
		7	-1.0333	1.0682	.991	-4.816	2.749
		8	8333	1.0682	.998	-4.616	2.949
		9	8000	1.0682	.999	-4.583	2.983
		10	-18.5333*	1.0682	.000	-22.316	-14.751
	T1	T0	4.1333*	1.0682	.025	.351	7.916
		3	.3667	1.0682	1.000	-3.416	4.149
		4	.3667	1.0682	1.000	-3.416	4.149
		5	.0667	1.0682	1.000	-3.716	3.849
		6	4.3000*	1.0682	.018	.517	8.083
		7	3.1000	1.0682	.169	683	6.883

Dependent Variable: mL

	8	3.3000	1.0682	.121	483	7.083
	9	3.3333	1.0682	.114	449	7.116
	10	-14.4000*	1.0682	.000	-18.183	-10.617
Т2	TO	3.7667	1.0682	.052	016	7.549
	2	3667	1.0682	1.000	-4.149	3.416
	4	.0000	1.0682	1.000	-3.783	3.783
	5	3000	1.0682	1.000	-4.083	3.483
	6	3.9333*	1.0682	.037	.151	7.716
	7	2.7333	1.0682	.297	-1.049	6.516
	8	2.9333	1.0682	.221	849	6.716
	9	2.9667	1.0682	.209	816	6.749
	10	-14.7667*	1.0682	.000	-18.549	-10.984
Т3	_T0	3.7667	1.0682	.052	016	7.549
	2	3667	1.0682	1.000	-4.149	3.416
	3	.0000	1.0682	1.000	-3.783	3.783
	5	3000	1.0682	1.000	-4.083	3.483
	6	3.9333*	1.0682	.037	.151	7.716
	7	2.7333	1.0682	.297	-1.049	6.516
	8	2.9333	1.0682	.221	849	6.716
	9	2.9667	1.0682	.209	816	6.749
	10	-14.7667*	1.0682	.000	-18.549	-10.984
T4	T0	4.0667*	1.0682	.029	.284	7.849
	2	0667	1.0682	1.000	-3.849	3.716
	3	.3000	1.0682	1.000	-3.483	4.083
	4	.3000	1.0682	1.000	-3.483	4.083
	6	4.2333*	1.0682	.021	.451	8.016
	7	3.0333	1.0682	.188	749	6.816
	8	3.2333	1.0682	.135	549	7.016
	9	3.2667	1.0682	.128	516	7.049
	10	-14.4667*	1.0682	.000	-18.249	-10.684
T5	T0	1667	1.0682	1.000	-3.949	3.616
	2	-4.3000*	1.0682	.018	-8.083	517
	3	-3.9333*	1.0682	.037	-7.716	151
	4	-3.9333*	1.0682	.037	-7.716	151
	5	-4.2333*	1.0682	.021	-8.016	451
	7	-1.2000	1.0682	.976	-4.983	2.583

	8	-1.0000	1.0682	.993	-4.783	2.783
	9	9667	1.0682	.994	-4.749	2.816
	10	-18.7000*	1.0682	.000	-22.483	-14.917
T6	T0	1.0333	1.0682	.991	-2.749	4.816
	2	-3.1000	1.0682	.169	-6.883	.683
	3	-2.7333	1.0682	.297	-6.516	1.049
	4	-2.7333	1.0682	.297	-6.516	1.049
	5	-3.0333	1.0682	.188	-6.816	.749
	6	1.2000	1.0682	.976	-2.583	4.983
	8	.2000	1.0682	1.000	-3.583	3.983
	9	.2333	1.0682	1.000	-3.549	4.016
	10	-17.5000*	1.0682	.000	-21.283	-13.717
T7	T0	.8333	1.0682	.998	-2.949	4.616
	2	-3.3000	1.0682	.121	-7.083	.483
	3	-2.9333	1.0682	.221	-6.716	.849
	4	-2.9333	1.0682	.221	-6.716	.849
	5	-3.2333	1.0682	.135	-7.016	.549
	6	1.0000	1.0682	.993	-2.783	4.783
	7	2000	1.0682	1.000	-3.983	3.583
	9	.0333	1.0682	1.000	-3.749	3.816
	10	-17.7000*	1.0682	.000	-21.483	-13.917
Biochar	T0	.8000	1.0682	.999	-2.983	4.583
	2	-3.3333	1.0682	.114	-7.116	.449
	3	-2.9667	1.0682	.209	-6.749	.816
	4	-2.9667	1.0682	.209	-6.749	.816
	5	-3.2667	1.0682	.128	-7.049	.516
	6	.9667	1.0682	.994	-2.816	4.749
	7	2333	1.0682	1.000	-4.016	3.549
	8	0333	1.0682	1.000	-3.816	3.749
	10	-17.7333*	1.0682	.000	-21.516	-13.951
Frass	T0	18.5333*	1.0682	.000	14.751	22.316
	2	14.4000^{*}	1.0682	.000	10.617	18.183
	3	14.7667*	1.0682	.000	10.984	18.549
	4	14.7667*	1.0682	.000	10.984	18.549
	5	14.4667*	1.0682	.000	10.684	18.249
	6	18.7000*	1.0682	.000	14.917	22.483

2.5000* 2.7000* 2.7333* 2.1333* 2.7667* 2.7667* 2.7667* 2.0667* .1667	1.0682 1.0682 1.0682 1.0682 1.0682 1.0682 1.0682	.000 .000 .001 .001 .002	13.717 13.917 13.951 -6.362 -5.995 -5.995	21.283 21.483 21.516 -1.905 -1.538
2.7000* 2.7333* 2.1333* 2.7667* 2.7667* 2.7667* 2.0667* .1667	1.0682 1.0682 1.0682 1.0682 1.0682 1.0682	.000 .000 .001 .002 .002	13.917 13.951 -6.362 -5.995 -5.995	21.483 21.516 -1.905 -1.538
2.7333* .1333* 2.7667* 2.7667* .0667* .1667	1.0682 1.0682 1.0682 1.0682 1.0682	.000 .001 .002 .002	13.951 -6.362 -5.995 -5.995	21.516 -1.905 -1.538
.1333* .7667* .7667* .0667* .1667	1.0682 1.0682 1.0682	.001 .002 .002	-6.362 -5.995 -5.995	-1.905 -1.538
0.7667* 0.7667* 0.0667* 0.1667	1.0682 1.0682 1.0682	.002	-5.995	-1.538
2.7667* 2.0667* .1667	1.0682 1.0682	.002	-5.995	
.0667* .1667	1.0682		2.770	-1.538
.1667		.001	-6.295	-1.838
	1.0682	.878	-2.062	2.395
1.0333	1.0682	.345	-3.262	1.195
8333	1.0682	.444	-3.062	1.395
8000	1.0682	.463	-3.028	1.428
3.5333*	1.0682	.000	-20.762	-16.305
.1333*	1.0682	.001	1.905	6.362
.3667	1.0682	.735	-1.862	2.595
.3667	1.0682	.735	-1.862	2.595
.0667	1.0682	.951	-2.162	2.295
.3000*	1.0682	.001	2.072	6.528
s.1000*	1.0682	.009	.872	5.328
3.3000*	1.0682	.006	1.072	5.528
3.3333*	1.0682	.005	1.105	5.562
.4000*	1.0682	.000	-16.628	-12.172
.7667*	1.0682	.002	1.538	5.995
3667	1.0682	.735	-2.595	1.862
.0000	1.0682	1.000	-2.228	2.228
3000	1.0682	.782	-2.528	1.928
.9333*	1.0682	.001	1.705	6.162
2.7333*	1.0682	.019	.505	4.962
.9333*	1.0682	.012	.705	5.162
.9667*	1.0682	.012	.738	5.195
.7667*	1.0682	.000	-16.995	-12.538
.7667*	1.0682	.002	1.538	5.995
3667	1.0682	.735	-2.595	1.862
.0000	1.0682	1.000	-2.228	2.228
3000	1.0682	.782	-2.528	1.928
.9333*	1.0682	.001	1.705	6.162
2.7333*	1.0682	.019	.505	4.962
	.1667 1.0333 8333 8000 3.5333* 1333* .3667 .3667 .3667 .3667 .3667 .3667 .3667 .3667 .3667 .3667 .3000* 3.3000* 3.3333* 4.4000* 3.7667* 3667 .0000 3000 3.9333* 2.9333* 2.9667* 4.7667* 3.7667* 3000 3.7667* .3000 3.7667* .3000 3.7667* .3000 3.7667* .3000 3.7667* .3000 .3000 .3000 .3000 .3000 .3000 .3000	1.0667* 1.0682 .1667 1.0682 1.0333 1.0682 8333 1.0682 8000 1.0682 .3000 1.0682 .3667 1.0682 .3667 1.0682 .3667 1.0682 .3667 1.0682 .3667 1.0682 .3000* 1.0682 .3000* 1.0682 .3333* 1.0682 .3300* 1.0682 .3300* 1.0682 .3000* 1.0682 .3333* 1.0682 .3333* 1.0682 .3000 1.0682 .3000 1.0682 .3333* 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000 1.0682 .3000	NOON NOON 1.0667** 1.0682 .001 .1667 1.0682 .878 1.0333 1.0682 .345 .8333 1.0682 .444 8000 1.0682 .463 3.5333* 1.0682 .463 3.5333* 1.0682 .000 1.1333* 1.0682 .001 .3667 1.0682 .735 .0667 1.0682 .001 3.3000* 1.0682 .001 3.1000* 1.0682 .009 3.3000* 1.0682 .000 3.333* 1.0682 .000 3.7667* 1.0682 .002 3667 1.0682 .002 3667 1.0682 .002 3667 1.0682 .001 2.9333* 1.0682 .012 2.9667* 1.0682 .012 2.9667* 1.0682 .012 2.9667* 1.0682 .012	3.7667* 1.0682 .002 -5.995 4.0667* 1.0682 .001 -6.295 .1667 1.0682 .878 -2.062 1.0333 1.0682 .345 -3.262 8333 1.0682 .444 -3.062 8000 1.0682 .463 -3.028 3.5333* 1.0682 .000 -20.762 4.1333* 1.0682 .001 1.905 .3667 1.0682 .735 -1.862 .3667 1.0682 .951 -2.162 4.3000* 1.0682 .000 2.072 3.000* 1.0682 .000 .872 3.300* 1.0682 .000 1.072 3.333* 1.0682 .000 1.105 4.4000* 1.0682 .000 1.105 4.4000* 1.0682 .000 1.105 4.4000* 1.0682 .000 1.538 3667 1.0682 .001 1.705

	8	2.9333*	1.0682	.012	.705	5.162
	9	2.9667*	1.0682	.012	.738	5.195
	10	-14.7667*	1.0682	.000	-16.995	-12.538
T4	TO	4.0667*	1.0682	.001	1.838	6.295
	2	0667	1.0682	.951	-2.295	2.162
	3	.3000	1.0682	.782	-1.928	2.528
	_4	.3000	1.0682	.782	-1.928	2.528
	6	4.2333*	1.0682	.001	2.005	6.462
	7	3.0333*	1.0682	.010	.805	5.262
	8	3.2333*	1.0682	.007	1.005	5.462
	9	3.2667*	1.0682	.006	1.038	5.495
	10	-14.4667*	1.0682	.000	-16.695	-12.238
Т5	Τ0	1667	1.0682	.878	-2.395	2.062
	2	-4.3000*	1.0682	.001	-6.528	-2.072
	3	-3.9333*	1.0682	.001	-6.162	-1.705
	4	-3.9333*	1.0682	.001	-6.162	-1.705
	5	-4.2333*	1.0682	.001	-6.462	-2.005
	7	-1.2000	1.0682	.275	-3.428	1.028
	8	-1.0000	1.0682	.360	-3.228	1.228
	9	9667	1.0682	.376	-3.195	1.262
	10	-18.7000*	1.0682	.000	-20.928	-16.472
Тб	T0	1.0333	1.0682	.345	-1.195	3.262
	2	-3.1000*	1.0682	.009	-5.328	872
	3	-2.7333*	1.0682	.019	-4.962	505
	4	-2.7333*	1.0682	.019	-4.962	505
	5	-3.0333*	1.0682	.010	-5.262	805
	6	1.2000	1.0682	.275	-1.028	3.428
	8	.2000	1.0682	.853	-2.028	2.428
	9	.2333	1.0682	.829	-1.995	2.462
	10	-17.5000*	1.0682	.000	-19.728	-15.272
Τ7	T0	.8333	1.0682	.444	-1.395	3.062
	2	-3.3000*	1.0682	.006	-5.528	-1.072
	3	-2.9333*	1.0682	.012	-5.162	705
	4	-2.9333*	1.0682	.012	-5.162	705
	5	-3.2333*	1.0682	.007	-5.462	-1.005
	6	1.0000	1.0682	.360	-1.228	3.228

		7	2000	1.0682	.853	-2.428	2.028
		9	.0333	1.0682	.975	-2.195	2.262
		10	-17.7000*	1.0682	.000	-19.928	-15.472
	Biochar	TO	.8000	1.0682	.463	-1.428	3.028
		2	-3.3333*	1.0682	.005	-5.562	-1.105
		3	-2.9667*	1.0682	.012	-5.195	738
		4	-2.9667*	1.0682	.012	-5.195	738
		5	-3.2667*	1.0682	.006	-5.495	-1.038
		6	.9667	1.0682	.376	-1.262	3.195
		7	2333	1.0682	.829	-2.462	1.995
		8	0333	1.0682	.975	-2.262	2.195
		10	-17.7333*	1.0682	.000	-19.962	-15.505
	Frass	T0	18.5333*	1.0682	.000	16.305	20.762
		2	14.4000*	1.0682	.000	12.172	16.628
		3	14.7667*	1.0682	.000	12.538	16.995
		4	14.7667*	1.0682	.000	12.538	16.995
		5	14.4667*	1.0682	.000	12.238	16.695
		6	18.7000*	1.0682	.000	16.472	20.928
		7	17.5000*	1.0682	.000	15.272	19.728
		8	17.7000*	1.0682	.000	15.472	19.928
		9	17.7333*	1.0682	.000	15.505	19.962

Table 4.18: Tukey HSD test of multiple comparisons for phosphorus

Dependent Variable: PHOSPHORUS

			Mean			95% Confid	ence Interval
			Difference (I-				
	(I) Treatmnet	(J) Treatmnet	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	T1	-416.46333	300.39911	.918	-1480.2090	647.2823
		T2	-18.13000	300.39911	1.000	-1081.8756	1045.6156
		T3	187.98000	300.39911	1.000	-875.7656	1251.7256

	T4	-115.63000	300.39911	1.000	-1179.3756	948.1156
	<u>T5</u>	-72.76000	300.39911	1.000	-1136.5056	990.9856
	T6	-5.63000	300.39911	1.000	-1069.3756	1058.1156
	<u>T7</u>	-144.80000	300.39911	1.000	-1208.5456	918.9456
	Biochar	-5.35333	300.39911	1.000	-1069.0990	1058.3923
	Frass	-278.13000	300.39911	.993	-1341.8756	785.6156
T1	<u>T0</u>	416.46333	300.39911	.918	-647.2823	1480.2090
	T2	398.33333	300.39911	.936	-665.4123	1462.0790
	T3	604.44333	300.39911	.601	-459.3023	1668.1890
	T4	300.83333	300.39911	.989	-762.9123	1364.5790
	<u>T5</u>	343.70333	300.39911	.973	-720.0423	1407.4490
	<u>T6</u>	410.83333	300.39911	.924	-652.9123	1474.5790
	T7	271.66333	300.39911	.994	-792.0823	1335.4090
	Biochar	411.11000	300.39911	.923	-652.6356	1474.8556
	Frass	138.33333	300.39911	1.000	-925.4123	1202.0790
T2	TO	18.13000	300.39911	1.000	- <mark>1045.6156</mark>	1081.8756
	<u>T1</u>	-398.33333	300.39911	.936	-1462.0790	665.4123
	<u>T3</u>	206.11000	300.39911	.999	-857.6356	1269.8556
	<u>T4</u>	-97.50000	300.39911	1.000	-1161.2456	966.2456
	T5	-54.63000	300.39911	1.000	-1118.3756	1009.1156
	<u>T6</u>	12.50000	300.39911	1.000	-1051.2456	1076.2456
	T7	-126.67000	300.39911	1.000	-1190.4156	937.0756
	Biochar	12.77667	300.39911	1.000	-1050.9690	1076.5223
_	Frass	-260.00000	300.39911	.996	-1323.7456	803.7456
Т3	ТО	-187.98000	300.39911	1.000	-1251.7256	875.7656
	<u>T1</u>	-604.44333	300.39911	.601	-1668.1890	459.3023
	T2	-206.11000	300.39911	.999	-1269.8556	857.6356
	T4	-303.61000	300.39911	.988	-1367.3556	760.1356
	T5	-260.74000	300.39911	.996	-1324.4856	803.0056
	<u>T6</u>	-193.61000	300.39911	1.000	-1257.3556	870.1356
	<u>T7</u>	-332.78000	300.39911	.978	-1396.5256	730.9656
	Biochar	-193.33333	300.39911	1.000	-1257.0790	870.4123
	Frass	-466.11000	300.39911	.855	-1529.8556	597.6356
T4	<u>T0</u>	115.63000	300.39911	1.000	-948.1156	1179.3756
	<u>T1</u>	-300.83333	300.39911	.989	-1364.5790	762.9123
	T2	97.50000	300.39911	1.000	-966.2456	1161.2456

 _						
	T3	303.61000	300.39911	.988	-760.1356	1367.3556
	T5	42.87000	300.39911	1.000	-1020.8756	1106.6156
	T6	110.00000	300.39911	1.000	-953.7456	1173.7456
	<u>T7</u>	-29.17000	300.39911	1.000	-1092.9156	1034.5756
	Biochar	110.27667	300.39911	1.000	-953.4690	1174.0223
	Frass	-162.50000	300.3 <mark>9</mark> 911	1.000	-1226.2456	901.2456
T5	T0	72.76000	300.39911	1.000	-990.9856	1136.5056
	T1	-343.70333	300.39911	.973	-1407.4490	720.0423
	T2	54.63000	300.39911	1.000	-1009.1156	1118.3756
	T3	260.74000	300.39911	.996	-803.0056	1324.4856
	T4	-42.87000	300.39911	1.000	-1106.6156	1020.8756
	T6	67.13000	300.39911	1.000	-996.6156	1130.8756
	Τ7	-72.04000	300.39911	1.000	-1135.7856	991.7056
	Biochar	67.40667	300.39911	1.000	-996.3390	1131.1523
	Frass	-205.37000	300.39911	.999	-1269.1156	858.3756
T6	T0	5.63000	300.39911	1.000	-1058.1156	1069.3756
	T1	-410.83333	300.39911	.924	-1474.5790	652.9123
	T2	-12.50000	300.39911	1.000	-1076.2456	1051.2456
	T3	193.61000	300.39911	1.000	-870.1356	1257.3556
	T4	-110.00000	300.39911	1.000	-1173.7456	953.7456
	T5	-67.13000	300.39911	1.000	-1130.8756	996.6156
	T7	-139.17000	300.39911	1.000	-1202.9156	924.5756
	Biochar	.27667	300.39911	1.000	-1063.4690	1064.0223
U.	Frass	-272.50000	300.39911	.994	-1336.2456	791.2456
T7	T0	144.80000	300.39911	1.000	-918.9456	1208.5456
	T1	-271.66333	300.39911	.994	-1335.4090	792.0823
	T2	126.67000	300.39911	1.000	-937.0756	1190.4156
	T3	332.78000	300.39911	.978	-730.9656	1396.5256
	T4	29.17000	300.39911	1.000	-1034.5756	1092.9156
	T5	72.04000	300.39911	1.000	-991.7056	1135.7856
	Тб	139.17000	300.39911	1.000	-924.5756	1202.9156
	Biochar	139.44667	300.39911	1.000	-924.2990	1203.1923
	Frass	-133.33000	300.39911	1.000	-1197.0756	930.4156
Biochar	T0	5.35333	300.39911	1.000	-1058.3923	1069.0990
	T1	-411.11000	300.39911	.923	-1474.8556	652.6356
	T2	-12.77667	300.39911	1.000	-1076.5223	1050.9690

\rightarrow
- Í I

	_						
		T3	193.33333	300.39911	1.000	-870.4123	1257.0790
		T4	-110.27667	300.39911	1.000	-1174.0223	953.4690
		T5	-67.40667	300.39911	1.000	-1131.1523	996.3390
		T6	27667	300.39911	1.000	-1064.0223	1063.4690
		T7	-139.44667	300.39911	1.000	-1203.1923	924.2990
		Frass	-272.77667	300.3 <mark>9911</mark>	.994	-1336.5223	790.9690
	Frass	T0	278.13000	300.39911	.993	-785.6156	1341.8756
		T1	-138.33333	300.39911	1.000	-1202.0790	925.4123
		T2	260.00000	300.39911	.996	-803.7456	1323.7456
		T3	466.11000	300.39911	.855	-597.6356	1529.8556
		<u>T4</u>	162.50000	300.39911	1.000	-901.2456	1226.2456
		T5	205.37000	300.39911	.999	-858.3756	1269.1156
		T6	272.50000	300.39911	.994	-791.2456	1336.2456
		T7	133.33000	300.39911	1.000	-930.4156	1197.0756
		Biochar	272.77667	300.39911	.994	-790.9690	1336.5223
LSD	T 0	T1	-416.46333	300.39911	.181	-1043.0849	210.1582
		T2	-18.13000	300.39911	.952	-644.7516	608.4916
		T3	187.98000	300.39911	.539	-438.6416	814.6016
		<u>T4</u>	-115.63000	300.39911	.704	-742.2516	510.9916
		T5	-72.76000	300.39911	.811	-699.3816	553.8616
		T6	-5.63000	300.39911	.985	-632.2516	620.9916
		T7	-144.80000	300.39911	.635	-771.4216	481.8216
		Biochar	-5.35333	300.39911	.986	-631.9749	621.2682
	UI	Frass	-278.13000	300.39911	.366	-904.7516	348.4916
	T1	T0	416.46333	300.39911	.181	-210.1582	1043.0849
		T2	398.33333	300.39911	.200	-228.2882	1024.9549
		T3	604.44333	300.39911	.058	-22.1782	1231.0649
		T4	300.83333	300.39911	.329	-325.7882	927.4549
		T5	343.70333	300.39911	.266	-282.9182	970.3249
		T6	410.83333	300.39911	.187	-215.7882	1037.4549
		T7	271.66333	300.39911	.377	-354.9582	898.2849
		Biochar	411.11000	300.39911	.186	-215.5116	1037.7316
	IZ 1	Frass	138.33333	300.39911	.650	-488.2882	764.9549
	T2	T0	18.13000	300.39911	.952	-608.4916	644.7516
		T1	-398.33333	300.39911	.200	-1024.9549	228.2882
	_	T3	206.11000	300.39911	.501	-420.5116	832.7316

	T4	-97.50000	300.39911	.749	-724.1216	529.1216
	T5	-54.63000	300.39911	.858	-681.2516	571.9916
	T6	12.50000	300.39911	.967	-614.1216	639.1216
	T 7	-126.67000	300.39911	.678	-753.2916	499.9516
	Biochar	12.77667	300.39911	.966	-613.8449	639.3982
	Frass	-260.00000	300.39911	.397	-886.6216	366.6216
Т3	T0	-187.98000	300.39911	.539	-814.6016	438.6416
	T1	-604.44333	300.39911	.058	-1231.0649	22.1782
	T2	-206.11000	300.39911	.501	-832.7316	420.5116
	T4	-303.61000	300.39911	.324	-930.2316	323.0116
	<u>T5</u>	-260.74000	300.39911	.396	-887.3616	365.8816
	T6	-193.61000	300.39911	.527	-820.2316	433.0116
	T7	-332.78000	300.39911	.281	-959.4016	293.8416
	Biochar	-193.33333	300.39911	.527	-819.9549	433.2882
	Frass	-466.11000	300.39911	.136	-1092.7316	160.5116
T4	T0	115.63000	300.39911	.704	-510.9916	742.2516
	T1	-300.83333	300.39911	.329	-927.4549	325.7882
	T2	97.50000	300.39911	.749	-529.1216	724.1216
	T3	303.61000	300.39911	.324	-323.0116	930.2316
	T5	42.87000	300.39911	.888	-583.7516	669.4916
	T6	110.00000	300.39911	.718	-516.6216	736.6216
	T7	-29.17000	300.39911	.924	-655.7916	597.4516
	Biochar	110.27667	300.39911	.717	-516.3449	736.8982
U	Frass	-162.50000	300.39911	.595	-789.1216	464.1216
T5	T0	72.76000	300.39911	.811	-553.8616	699.3816
	T1	-343.70333	300.39911	.266	-970.3249	282.9182
	T2	54.63000	300.39911	.858	-571.9916	681.2516
	Т3	260.74000	300.39911	.396	-365.8816	887.3616
	T4	-42.87000	300.39911	.888	-669.4916	583.7516
	Тб	67.13000	300.39911	.825	-559.4916	693.7516
	<u>T7</u>	-72.04000	300.39911	.813	-698.6616	554.5816
	Biochar	67.40667	300.39911	.825	-559.2149	694.0282
	Frass	-205.37000	300.39911	.502	-831.9916	421.2516
Т6	<u>T0</u>	5.63000	300.39911	.985	-620.9916	632.2516
	T1	-410.83333	300.39911	.187	-1037.4549	215.7882
	T2	-12.50000	300.39911	.967	-639.1216	614.1216

\vdash
\triangleleft
\succ

	T3	193.61000	300.39911	.527	-433.0116	820.2316
	T4	-110.00000	300.39911	.718	-736.6216	516.6216
	T5	-67.13000	300.39911	.825	-693.7516	559.4916
	T7	-139.17000	300.39911	.648	-765.7916	487.4516
	Biochar	.27667	300.39911	.999	-626.3449	626.8982
	Frass	-272.50000	300.39911	.375	-899.1216	354.1216
Т7	T0	144.80000	300.39911	.635	-481.8216	771.4216
	T1	-271.66333	300.39911	.377	-898.2849	354.9582
	T2	126.67000	300.39911	.678	-499.9516	753.2916
	T3	332.78000	300.39911	.281	-293.8416	959.4016
	<u>T</u> 4	29.17000	300.39911	.924	-597.4516	655.7916
	T5	72.04000	300.39911	.813	-554.5816	698.6616
	T6	139.17000	300.39911	.648	-487.4516	765.7916
	Biochar	139.44667	300.39911	.648	-487.1749	766.0682
	Frass	-133.33000	300.39911	.662	-759.9516	493.2916
Biochar	T0	5.35333	300.39911	.986	-621.2682	631.9749
	T1	-411.11000	300.39911	.186	-1037.7316	215.5116
	T2	-12.77667	300.39911	.966	-639.3982	613.8449
	T3	193.33333	300.39911	.527	-433.2882	819.9549
	T4	-110.27667	300.39911	.717	-736.8982	516.3449
	T5	-67.40667	300.39911	.825	-694.0282	559.2149
	T6	27667	300.39911	.999	-626.8982	626.3449
	T7	-139.44667	300.39911	.648	-766.0682	487.1749
<u> </u>	Frass	-272.77667	300.39911	.375	-899.3982	353.8449
Frass	T0	278.13000	300.39911	.366	-348.4916	904.7516
	T1	-138.33333	300.39911	.650	-764.9549	488.2882
	T2	260.00000	300.39911	.397	-366.6216	886.6216
	Т3	466.11000	300.39911	.136	-160.5116	1092.7316
	T4	162.50000	300.39911	.595	-464.1216	789.1216
	T5	205.37000	300.39911	.502	-421.2516	831.9916
	T6	272.50000	300.39911	.375	-354.1216	899.1216
	T7	133.33000	300.39911	.662	-493.2916	759.9516
		5 7 7			T	

Dependent Vari	iable: Potassii	im in ppm					
	(I)	(J)	Mean			95% Confide	ence Interval
	Treatment	Treatment	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Т0	T1	-197666.667	116121.488	.782	-608865.37	213532.04
		T2	-41000.000	116121.488	1.000	-452198.71	370198.71
		T3	-111000.000	116121.488	.992	-522198.71	300198.71
		T4	-407666.667	116121.488	.053	-818865.37	3532.04
		T5	-34333.333	116121.488	1.000	-445532.04	376865.37
		T6	-87666.667	116121.488	.999	-498865.37	323532.04
		T7	-144333.333	116121.488	.955	-555532.04	266865.37
		Biochar	-377666.667	116121.488	.089	-788865.37	33532.04
		Frass	-781000.000*	116121.488	.000	-1192198.71	-369801.29
	T1	T 0	197666.667	116121.4 <mark>88</mark>	.782	-213532.04	608865.37
		T2	156666.667	116121.488	.929	-254532.04	567865.37
		T3	86666.667	116121.488	.999	-324532.04	497865.37
		T4	-210000.000	116121.488	.723	-621198.71	201198.71
		T5	163333.333	116121.488	.911	-247865.37	574532.04
		T6	110000.000	116121.488	.992	-301198.71	521198.71
		T7	53333.333	116121.488	1.000	-357865.37	464532.04
		Biochar	-180000.000	116121.488	.856	-591198.71	231198.71
	TTR	Frass	-583333.333*	116121.488	.002	-994532.04	-172134.63
	T2	T0	41000.000	116121.488	1.000	-370198.71	452198.71
		T1	-156666.667	116121.488	.929	-567865.37	254532.04
		T3	-70000.000	116121.488	1.000	-481198.71	341198.71
		T4	-366666.667	116121.488	.106	-777865.37	44532.04
		T5	6666.667	116121.488	1.000	-404532.04	417865.37
		T6	-46666.667	116121.488	1.000	-457865.37	364532.04
		T7	-103333.333	116121.488	.995	-514532.04	307865.37
		Biochar	-336666.667	116121.488	.170	-747865.37	74532.04
		Frass	-740000.000*	116121.488	.000	-1151198.71	-328801.29
	T3	T0	111000.000	116121.488	.992	-300198.71	522198.71
		T1	-86666.667	116121.488	.999	-497865.37	324532.04
		T2	70000.000	116121.488	1.000	-341198.71	481198.71
		T4	-296666.667	116121.488	.299	-707865.37	114532.04
		T5	76666.667	116121.488	.999	-334532.04	487865.37

Table 4.19: Tukey HSD test of multiple comparisons for potassium

T6	23333.333	116121.488	1.000	-387865.37	434532.04
T7	-33333.333	116121.488	1.000	-444532.04	377865.37
Biochar	-266666.667	116121.488	.431	-677865.37	144532.04
Frass	-670000.000*	116121.488	.000	-1081198.71	-258801.29
Т0	407666.667	116121.488	.053	-3532.04	818865.37
T1	210000.000	116121.488	.723	-201198.71	621198.71
T2	366666.667	116121.488	.106	-44532.04	777865.37
Т3	296666.667	116121.488	.299	-114532.04	707865.37
T5	373333.333	116121.488	.095	-37865.37	784532.04
T6	320000.000	116121.488	.217	-91198.71	731198.71
T7	263333.333	116121.488	.448	-147865.37	674532.04
Biochar	30000.000	116121.488	1.000	-381198.71	441198.71
Frass	-373333.333	116121.488	.095	-784532.04	37865.37
Т0	34333.333	116121.488	1.000	-376865.37	445532.04
T1	-163333.333	116121.488	.911	-574532.04	247865.37
T2	-6666.667	116121.488	1.000	-417865.37	404532.04
T3	-76666.667	116121.488	.999	-487865.37	334532.04
T4	-373333.333	116121.488	.095	-784532.04	37865.37
T6	-53333.333	116121.488	1.000	-464532.04	357865.37
T7	-110000.000	116121.488	.992	-521198.71	301198.71
Biochar	-343333.333	116121.488	.153	-754532.04	67865.37
Frass	-746666.667*	116121.488	.000	-1157865.37	-335467.96
Т0	87666.667	116121.488	.999	-323532.04	498865.37
T1	-110000.000	116121.488	.992	-521198.71	301198.71
T2	46666.667	116121.488	1.000	-364532.04	457865.37
T3	-23333.333	116121.488	1.000	-434532.04	387865.37
T4	-320000.000	116121.488	.217	-731198.71	91198.71
T5	53333.333	116121.488	1.000	-357865.37	464532.04
T7	-56666.667	116121.488	1.000	-467865.37	354532.04
Biochar	-290000.000	116121.488	.326	-701198.71	121198.71
Frass	-693333.333*	116121.488	.000	-1104532.04	-282134.63
ТО	144333.333	116121.488	.955	-266865.37	555532.04

-53333.333

103333.333

33333.333

-263333.333

116121.488

116121.488

116121.488

116121.488

1.000

.995

1.000

.448

-464532.04

-307865.37

-377865.37

-674532.04

357865.37

514532.04

444532.04

147865.37

T4

Т5

T6

T7

T1

T2

Т3

T4

110000.000 -301198.71 521198.71 T5 116121.488 .992 **T**6 56666.667 116121.488 1.000 -354532.04 467865.37 -233333.333 116121.488 .603 -644532.04 177865.37 Biochar .001 Frass -636666.667* 116121.488 -1047865.37 -225467.96 Biochar **T**0 377666.667 116121.488 .089 -33532.04 788865.37 T1 180000.000 116121.488 .856 -231198.71 591198.71 336666.667 .170 -74532.04 747865.37 T2 116121.488 T3 266666.667 116121.488 .431 -144532.04 677865.37 T4 -30000.000 1.000 116121.488 -441198.71 381198.71 T5 343333.333 .153 -67865.37 754532.04 116121.488 T6 290000.000 .326 -121198.71 701198.71 116121.488 T7 .603 -177865.37 233333.333 116121.488 644532.04 -403333.333 116121.488 .057 -814532.04 7865.37 Frass Frass T0 781000.000* 116121.488 .000 369801.29 1192198.71 **T**1 583333.333* .002 172134.63 994532.04 116121.488 T2 740000.000* 116121.488 .000 328801.29 1151198.71 670000.000* **T**3 116121.488 .000 258801.29 1081198.71 T4 373333.333 116121.488 .095 -37865.37 784532.04 T5 746666.667* 116121.488 .000 335467.96 1157865.37 T6 693333.333* 116121.488 .000 282134.63 1104532.04 T7 636666.667* 116121.488 .001 225467.96 1047865.37 .057 Biochar 403333.333 116121.488 -7865.37 814532.04 LSD T0 T1 -197666.667 116121.488 .104 -439891.85 44558.51 T2 -41000.000 116121.488 .728 -283225.18 201225.18 Т3 -111000.000116121.488 .351 -353225.18 131225.18 T4 -407666.667* 116121.488 .002 -649891.85 -165441.49 T5 -34333.333 116121.488 .771 207891.85 -276558.51 T6 116121.488 .459 -329891.85 -87666.667 154558.51 T7 -144333.333 116121.488 .228 97891.85 -386558.51 Biochar -377666.667* 116121.488 .004 -619891.85 -135441.49 .000 -781000.000* 116121.488 -1023225.18 -538774.82 Frass **T**1 T0 197666.667 116121.488 .104 -44558.51 439891.85 .192 T2 156666.667 116121.488 -85558.51 398891.85 T3 86666.667 116121.488 .464 -155558.51 328891.85 -452225.18 32225.18 T4 -210000.000 116121.488 .086 T5 163333.333 116121.488 .175 -78891.85 405558.51

FYP FIAT
110000.000 116121.488 -132225.18 352225.18 T6 .355 **T**7 53333.333 116121.488 .651 -188891.85 295558.51 -180000.000 116121.488 -422225.18 62225.18 Biochar .137 -583333.333* -825558.51 Frass 116121.488 .000 -341108.15 T2 T0 41000.000 116121.488 .728 -201225.18 283225.18 -398891.85 85558.51 T1 -156666.667 116121.488 .192 Т3 -70000.000 116121.488 -312225.18 172225.18 .553 T4 -366666.667* 116121.488 .005 -608891.85 -124441.49 248891.85 T5 .955 -235558.51 6666.667 116121.488 T6 -46666.667 .692 -288891.85195558.51 116121.488 T7 -103333.333 .384 -345558.51 138891.85 116121.488 .009 -578891.85 -94441.49 Biochar -336666.667* 116121.488 -740000.000^{*} 116121.488 .000 -982225.18 -497774.82 Frass T3 -131225.18 T0 111000.000 116121.488 .351 353225.18 **T**1 .464 -328891.85 -86666.667 116121.488 155558.51 T2 70000.000 116121.488 .553 -172225.18 312225.18 -296666.667* **T**4 116121.488 .019 -538891.85 -54441.49T5 76666.667 116121.488 .517 -165558.51 318891.85 T6 23333.333 116121.488 .843 -218891.85 265558.51 T7 -33333.333 116121.488 .777 -275558.51 208891.85 Biochar -266666.667* 116121.488 .033 -508891.85 -24441.49 -670000.000* 116121.488 -912225.18 -427774.82 .000 Frass **T**4 **T**0 407666.667* 116121.488 .002 165441.49 649891.85 **T**1 210000.000 116121.488 .086 -32225.18 452225.18 T2 366666.667* 116121.488 .005 124441.49 608891.85 54441.49 T3 296666.667* 116121.488 .019 538891.85 T5 373333.333* 116121.488 .004 131108.15 615558.51 77774.82 T6 320000.000^{*} 116121.488 .012 562225.18 T7 263333.333* 116121.488 .035 21108.15 505558.51 Biochar -212225.18 30000.000 116121.488 .799 272225.18 -373333.333* 116121.488 .004 -615558.51 -131108.15 Frass T5 T0 34333.333 116121.488 .771 -207891.85 276558.51 -163333.333 116121.488 **T**1 .175 -405558.51 78891.85 T2 -6666.667 116121.488 .955 -248891.85235558.51 -318891.85 T3 -76666.667 116121.488 .517 165558.51 T4 -373333.333* 116121.488 .004 -615558.51 -131108.15

	T6	-53333.333	116121.488	.651	-295558.51	188891.85
	T7	-110000.000	116121.488	.355	-352225.18	132225.18
	Biochar	-343333.333*	116121.488	.008	-585558.51	-101108.15
	Frass	-746666.667*	116121.488	.000	-988891.85	-504441.49
T6	<u>T0</u>	87666.667	116121.488	.459	-154558.51	329891.85
	T1	-110000.000	116121.488	.355	-352225.18	132225.18
	T2	46666.667	116121.488	.692	-195558.51	288891.85
	T3	-23333.333	116121.488	.843	-265558.51	218891.85
	T4	-320000.000*	116121.488	.012	-562225.18	-77774.82
	T5	53333.333	116121.488	.651	-188891.85	295558.51
	T7	-56666.667	116121.488	.631	-298891.85	185558.51
	Biochar	-290000.000*	116121.488	.021	-532225.18	-47774.82
	Frass	-693333.333*	116121.488	.000	-935558.51	-451108.15
Т7	<u>T0</u>	144333.333	116121.488	.228	-97891.85	386558.51
	T 1	-53333.333	116121.488	.651	-295558.51	188891.85
	T2	103333.333	116121.488	.384	-138891.85	345558.51
	T3	33333.333	116121.488	.777	-208891.85	275558.51
	T4	-263333.333*	116121.488	.035	-505558.51	-21108.15
	T5	110000.000	116121.488	.355	-132225.18	352225.18
	T6	56666.667	116121.488	.631	-185558.51	298891.85
	Biochar	-233333.333	116121.488	.058	-475558.51	8891.85
	Frass	-636666.667*	116121.488	.000	-878891.85	-394441.49
Biochar	T0	377666.667*	116121.488	.004	135441.49	619891.85
	T1	180000.000	116121.488	.137	-62225.18	422225.18
	T2	336666.667*	116121.488	.009	94441.49	578891.85
	T3	266666.667*	116121.488	.033	24441.49	508891.85
	T4	-30000.000	116121.488	.799	-272225.18	212225.18
	T5	343333.333*	116121.488	.008	101108.15	585558.51
	T6	290000.000*	116121.488	.021	47774.82	532225.18
	T7	233333.333	116121.488	.058	-8891.85	475558.51
	Frass	-403333.333*	116121.488	.002	-645558.51	-161108.15
Frass	TO	781000.000*	116121.488	.000	538774.82	1023225.18
	T1	583333.333*	116121.488	.000	341108.15	825558.51
	T2	740000.000*	116121.488	.000	497774.82	982225.18
	T3	670000.000*	116121.488	.000	427774.82	912225.18
	T4	373333.333*	116121.488	.004	131108.15	615558.51

T5	746666.667*	116121.488	.000	504441.49	988891.85
T6	693333.333*	116121.488	.000	451108.15	935558.51
T7	636666.667*	116121.488	.000	394441.49	878891.85
Biochar	403333.333*	116121.488	.002	161108.15	645558.51

*. The mean difference is significant at the 0.05 level.

Table 4.20: ANOVA test results for height of plant

ANOVA

Height in cm						
	Sum of Squares	df		Mean Square	F	Sig.
Between Groups	257.112		7	36.730	7.540	.000
Within Groups	77.947		16	4.872		
Total	335.058		23			

Table 4.21: ANOVA test results for fresh weight of plant

ANOVA

Weight in g

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	745.589	7	106.513	6.232	.001
Within Groups	273.475	16	17.092		
Total	1019.064	23	I DI		

Table 4.22: ANOVA test results for dry weight of plant

ANOVA

Weight in g

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.638	7	.663	5.251	.003
Within Groups	2.019	16	.126		
Total	6.657	23			

Table 4.23: ANOVA test results for number of leaves of plant

ANOVA

LEAVES						
	Sum of Squares	df		Mean Square	F	Sig.
Between Groups	24.000		7	3. <mark>4</mark> 29	2.837	.040
Within Groups	19.333		16	1.208		
Total	43.333		23			

Table 4.24: ANOVA test results for pH of plant

		ANOVA	L		
рН					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.507	7	.072	.620	.732
Within Groups	1.867	16	.117		
Total	2.373	23			

Table 4.25: ANOVA test results for nitrogen content in soil sample

ANOVA										
Nitrogen content, mL										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	818.200	9	90.911	53.113	.000					
Within Groups	34.233	20	1.712	T 5						
Total	852.434	29	YN	\square						

Table 4.26: ANOVA test results for phosphorus content in soil sample

		ANOV	4		
PHOSPHORUS					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	751959.823	ç	83551.091	.617	.769
Within Groups	2707188.824	20	135359.441		
Total	3459148.647	29			

Table 4.27: ANOVA test results for potassium content in soil sample

ANOVA

Potassium in ppm

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	15758933666666.667	9	17509926296 <mark>2.963</mark>	8.657	.000
Within Groups	404526000000.000	20	20226300000.000		
Total	1980419366666.667	29			

Day / T	T0 (cm)	T1 (cm)	T2 (cm)	T3 (cm)	T4 (cm)	T5 (cm)	T6 (cm)	T7 (cm)
10/12	3.53	2.7	2.8	2.2	3.2	3	3.5	2.5
12/12	4.6	4.4	3.4	2.8	4.1	3.3	3.7	3.5
14/12	4 <mark>.6</mark>	6.2	4.9	3.7	6	3.9	5.3	4.6
16/12	4.9	8	6.7	4.1	6.8	4.4	6.6	6.6
18/12	5 5	87	7.2	6.8	8.1	5.2	9	7 1
20/12	6	9	8.5	6.6	73	5.5	10	73
22/12	63	97	9.3	7.4	87	49	10.9	9.9
24/12	6.5	93	10.9	9	9.4	5.1	10.7	12.1
26/12	6.5	10.1	12.5	0	0.8	5.8	13.3	13.5
28/12	6.8	13.1	14.4	10.7	12.5	6	15.1	14.3

Table 4.28: Average plant growth in the interval of 2 days