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Effect of Transportation in Liquid Nitrogen on Viability of Bovine Oocytes  

ABSTRACT 

Oocyte cryopreservation has significantly increased as freezing technology improves. 
Excess oocytes obtained during assisted reproduction technology therapies can be 
stored safely and indefinitely with cryopreservation. This technology promises 
improvement in the establishment of oocytes banks, permitting female genetic material 
to be stored unfertilized until the desired male germplasm is selected. However, there is 
concern regarding the transportation effect as the movement to and from the central 
laboratory may have adverse effects on vitrified oocytes. Currently, studies on the effect 
of transportation towards the viability of oocytes are still scarce. Studies showed that 
vibrations that occur during transportation will disrupt the cells cytoskeleton. In contrast, 
it has also been suggested that the low frequency of vibration facilitates the pregnancy 
rate of embryo. The objectives of this study were 1) to investigate the effect of 
transportation on oocytes and 2) to determine the viability of oocytes after transportation. 
In this study, bovine ovaries that were collected from slaughterhouses were sliced to 
retrieve oocytes for in vitro maturation (IVM). After 24 hours of IVM, the oocytes were 
vitrified using open-pulled straw and plunged directly into liquid nitrogen. The vitrified 
oocytes were divided into three groups whereby one was the control group and other 
groups were exposed to vibrations of 180 and 300 rpm for one hour (to simulate 
transportation via airplanes and trucks), respectively. The viability of oocytes was 
examined using fluorescein diacetate stain. Result showed that there was no significant 
difference between control and experimental groups (P>0.05). The viability of control, 
truck and airplane groups recorded were 95%, 100% and 100%, respectively. The 
mechanical vibration is suggested to have no harmful effect but serves as a stimulation 
to induce intracellular communication which is essential in cell differentiation. In 
conclusion, the vibration had no adverse effect on the viability of vitrified bovine oocytes. 

Keywords: Transportation, vibration, liquid nitrogen, oocytes, viability 
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KESAN PENGANGKUTAN DALAM NITROGEN CECAIR TERHADAP KADAR 
PENGHIDUPAN OSIT BOVIN 

ABSTRAK 

Kriopreservasi oosit untuk pemeliharaan kesuburan telah meningkat dengan ketara 
disebabkan teknologi pembekuan yang bertambah canggih. Oosit yang berlebihan 
semasa terapi teknologi pembiakan dibantu boleh disimpan dengan menggunakan 
teknologi vitrifikasi. Teknologi ini menyumbang kepada penubuhan bank oosit, 
membolehkan oosit disimpan dengan keadaan baik sehingga sperma yang sesuai dipilih. 
Walau bagaimanapun, terdapat kebimbangan mengenai kesan pengangkutan terhadap 
oosit dibeku kerana pergerakan ke dan dari makmal pusat mungkin mempunyai 
beberapa kesan buruk terhadap oosit yang telah dibeku. Pada masa kini, maklumat 
mengenai kesan pengangkutan terhadap viabiliti oosit masih tidak mencukupi. Beberapa 
kajian menunjukkan getaran yang berlaku semasa pengangkutan akan mengganggu 
sitoskeleton sel. Manakala beberapa kajian menyimpulkan bahawa frekuensi rendah 
getaran memudahkan kadar kehamilan embrio. Oleh itu, kajian ini dijalankan dengan 
objektif untuk menyiasat kesan pengangkutan terhadap oosit dan menentukan viabiliti 
oosit selepas pengangkutan. Dalam kajian ini, ovari lembu telah dikumpul dari rumah 
sembelih. Oosit dikeluarkan dan dipilih untuk pematangan in vitro. Selepas dikultur 
dalam media pematangan selama 24 jam, oosit dikeluarkan dan dibeku dengan 
menggunakan open pulled straw yang diubahsuai. Oosit yang telah dibeku telah 
dibahagikan kepada tiga kumpulan, salah satu kumpulan dijadikan kumpulan kawalan, 
kumpulan lain telah terdedah kepada getaran di frekuensi 180 dan 300 rpm selama satu 
jam untuk mensimulasikan pengangkutan kapal terbang dan trak. Penilaian viabiliti 
terhadap oosit kumpulan kawalan dan rawatan telah dijalankan dengan menggunakan 
fluorescein diacetate selepas pencairan. Keputusan menunjukkan perbezaan antara 
viabiliti kumpulan kawalan dengan eksperimen adalah tidak signifikan (P> 0.05). Viabiliti 
kumpulan trak dan kapal terbang adalah sangat tinggi, iaitu masing-masing 95%, 100% 
dan 100%. Viabiliti yang tinggi menunjukkan bahawa getaran tidak mempunyai kesan 
buruk terhadap viabiliti oosit. 

Kata kunci: Pengangkutan, getaran, nitrogen cecair, oosit, viabiliti 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

 Cryopreservation is commonly used to preserve intact living cells and tissues at a 

very low temperature. Whittingham et al. (1972) reported the first successful 

cryopreservation of mouse embryos and later the first birth after cryopreserving mouse 

oocytes in liquid nitrogen was recorded in 1977. Fuku, Kojima, Shioya, Marcus, & 

Downey (1992) also reported the first success in obtaining calves after freezing and 

thawing in-vitro mature bovine oocytes. Until now, there are two basic cryopreservation 

methods that have been introduced, slow freezing which is the first technique to be 

developed and vitrification. Slow freezing is known as equilibration freezing whereby 

extracellular water slowly crystallizes under controlled-cooling rate conditions and the 

resulting osmotic gradient draws water from the intracellular compartment.  

  

 In contrast, vitrification is a non-equilibrium method where both intra and 

extracellular components are vitrified after dehydration (Saragusty J. & Arav A., 2011). 

This provides a higher survival rate and minimizes the deleterious effects on post-

warming oocyte and embryo morphology (Rezazadeh Valojerdi, Eftekhari-Yazdi, 

Karimian, Hassani, & Movaghar, 2009). However, it requires extremely high cooling rate 

and higher concentration of cryoprotectants to achieve rapid freezing with minimum 
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freezing injury (Gábor Vajta & Nagy, 2006). Rall & Fahy (1985) were the first to report a 

high proportion of mouse embryos survived after vitrification at -196°C. Five years later, 

another attempt for human cleavage-stage embryo was done with successful delivery 

(Gordts, Roziers, Campo, & Noto, 1990). There are several reports that showed that 

vitrified oocytes gave higher post-thaw survival, fertilization, implantation and pregnancy 

rates compared to slow freezing method (Cobo & Diaz, 2011; Herrero, Martínez, & 

Garcia-Velasco, 2011; Zhang, Liu, Xing, Zhou, & Cao, 2011). Today, vitrification has 

been widely used to cryopreserve reproductive cells in assisted reproductive technology 

(ART).  

 

 Oocyte cryopreservation has significantly increased in fertility preservation as the 

freezing technology has improved. The excess oocytes during ART therapies could be 

stored safely and improve the establishment of oocyte banks, permitting female genetic 

material to be stored unfertilized until the desired male germplasm is selected. However, 

there is concern regarding the transportation of vitrified oocytes as the movement to and 

from the central laboratory may have several adverse effects on vitrified oocytes (Gandhi, 

Allahbadia, Kagalwala, & Madne, 2015). McDonald et al. (2011) had investigated the 

effect of transporting cryopreserved oocytes and found that the survival rate 3 hours after 

thawing of vitrified and shipped oocytes is significantly lower than that of non-shipped 

vitrified oocytes. The effect of transportation raises the concern in researchers to 

improve the survival rate, viability and the ability to be fertilized of vitrified, shipped 

oocytes. 

  

 The objective of this study was to determine the transportation effect with 

different vibration frequencies on the viability of oocytes. In this experiment, the ovaries 

were collected from slaughterhouse and transported to laboratory within 2 hours after 
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slaughtering. The collected ovaries were washed using phosphate buffer solution (PBS) 

with antibiotic, and then followed by oocyte recovery. Oocytes recovered were allowed to 

mature in vitro to standardize the development stages before vitrification. The vitrified 

oocytes were divided into three groups, whereby one is control, and the remaining two 

groups were exposed to 300 and 180 rpm of vibration load to mimic the transportation 

environment of a truck and an airplane, respectively. 

 

1.2 Problem Statement 

 

 There are many livestock breeds experiencing a gradual diminishment of genetic 

diversity. Artificial selection pressure increased rapidly due to the wide use of artificial 

reproductive techniques such as artificial insemination, embryo transfer and the use of 

sexed semen (Powell, Norman, & Sanders, 2003; Sørensen, Voergaard, Pedersen, Berg, 

& Sørensen, 2011). The high intensity of artificial selection makes the recovery of 

underestimated traits quickly impossible. Therefore, overall genetic resources must be 

conserved by the international community in order to conserve the potential to face 

future challenges such as climate changes, emerging diseases, pressure on land and 

water and shifting market demands. 

 

 Oocyte cryopreservation is important to conserve maternal genome for 

establishment and maintenance of genetic banks (Vieira et al., 2002). The oocytes are 

safely stored in a frozen state until an appropriate male germplasm is selected. However, 

the vitrified oocytes have to be transported from central laboratory to other areas for 

research or breeding purposes. The journey of transportation varies depending on the 

destination, as well as the travel time. Generally, researchers would use land transport to 

reach their destination within one day but international collaboration requires air freight 
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transportation to minimize the travel time. During transportation, vibration is the main 

concern as a large vibration could give adverse effect to the oocytes. The viability and 

the quality of oocytes might be reduced after the transportation and resulting large loss 

of biological sample, time and money. In order to minimize the damage towards oocytes, 

the effect of transportation should be studied to maintain the viability of oocytes after 

transporting from one place to another. 

 

1.3 Objectives 

 

1. To investigate the effect of transportation with different vibration frequencies on 

oocytes using liquid nitrogen. 

2. To determine the viability of oocyte after transportation. 

 

1.4 Scope of Study 

 

 The study was carried out using bovine oocytes collected from slaughterhouse. 

Recovered oocytes with one or more layer of cumulus cells and evenly granulated 

oocytes were selected for in vitro maturation (IVM). After 24 hours of IVM, the mature 

oocytes were exposed to ethylene glycol (EG) and dimethyl sulfoxide (DMSO) for 

equilibration purposes. Then, the oocytes were immediately transferred to a vitrification 

solution that contained a higher concentration of EG and DMSO with the addition of 

sucrose for 45 seconds, followed by loading of oocytes into open-pulled straw (OPS). 

Vitrified oocytes were divided into three groups, one served as a control group which 

remained in the liquid nitrogen tank and not shipped, while the other two were in 

experimental groups that given vibration loads of 180 rpm and 300 rpm to mimic 

transportation for 1 hour. All groups of oocytes were warmed and examined after the 
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transportation. The viability of control groups and experimental groups were compared 

and examined using fluorescein diacetate (FDA) stain. 

 

1.5  Significance of Study 

 

 The transportation of oocyte is crucial as the journey of the transportation might 

cause damage to oocytes, reduced viability and cause irreversible fertility loss. These 

detrimental effects should be avoided as these poor quality oocytes are not able to be 

utilized for research or breeding purposes. This results the wastage of oocytes from 

potential breed stock as well as financial loss. Thus, this study will provide information on 

the effect of transportation on the viability of oocytes. If any detrimental effects caused by 

transportation are seen, further research will be needed to facilitate ways to minimize it.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Ovaries  

 

 Ovary is the primary female reproductive organ that located in the abdominal 

cavity of cattle. The paired ovaries are oval to bean-shaped, 1 – 1.5 inches long and pale 

pink in colour. It serves as a site of gamete production where germ cells form follicles, 

develop and mature. The germ cells produced are named oocytes and carrying the 

maternal genome. Besides that, ovaries are also playing an important role as endocrine 

glands. They are producing steroid hormones such as oestrogen and progesterone that 

are necessary for reproduction (Stefansdottir, Fowler, Powles-Glover, Anderson, & 

Spears, 2014). Oestrogen is crucial in the development of female sex characteristics 

whereas progesterone is responsible for the uterus preparation before pregnancy, and 

preparing mammary gland during lactation too.  

 

   Histologically, there are three developmental stages of ovarian follicles, 

primordial, growing and mature follicles as known as Graafian follicles. Primordial 

follicles are the earliest stages of mammalian oocytes development during gestation 

(Baillet & Mandon-Pepin, 2012). Each follicle contains an oocyte that is not growing and 

surrounded by a layer of flattened granulosa cells. When the follicle enters growing stage, 

the oocyte will starts enlarging and the granulosa cells proliferate to become cuboidal 

(Fair, Hulshof, Hyttel, Greve, & Boland, 1997). In between the oocyte and proliferated 
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granulosa cells, the thick coat called zona pellucida is formed. At this stage, the follicle is 

identified as primary follicle.  

 

 As the oocytes grow, the layers of granulosa cells will continue proliferate and 

form the fluid-filled antral cavity called antrum. The formation of antrum results a 

dramatic increase in follicle size and become secondary follicles. Once the secondary 

follicle matures, it is identified as Graafian follicle which will expel its oocyte during 

ovulation. The granulosa cells will then differentiate to corpus luteum and responsible for 

progesterone production (Parker & Mathis, 2014; Stefansdottir, Fowler, Powles-Glover, 

Anderson, & Spears, 2014).  

 

2.1.1 Ovaries Collection 

 

 Slaughterhouse is the most economical source of oocytes compared to other 

recovery methods such as ovum-picked up (OPU) technique. This allows large 

production of embryo with minimum cost. From slaughterhouse, pairs of fresh ovaries 

could be collected from slaughtered cattle, and transport to laboratory for processing. 

Studies reported that the time in between animal being slaughtered and oocytes 

recovery has a direct effect on the oocyte quality. Saleh (2017) demonstrated that longer 

period of time after slaughter results lower yield of oocytes with bad quality. The highest 

yield and quality was recorded in the first two hours after slaughter where the lowest 

yield was after 24 hours. This result was supported by  Lv et al. (2010) and Lonergan & 

Fair (2016) that suggested the time interval between ovaries collection and oocyte 

recovery is the dominant factor to yield fertility impaired oocytes. 
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 Other than the time elapsed after slaughter, temperature is one of the factors 

affecting oocyte quality. During transportation to laboratory, the fluctuation of 

temperature is extremely important to be avoided. In general, ovaries are transported in 

saline solution at the temperature between 30ºC and 37ºC to maintain the oocytes 

quality. A thermo-protective container or cooler insulated container with a bottle of 

phosphate buffer solution could be used to provide a consistent environment for ovaries 

(Hatzel & Carnevale, 2016).     

 

2.1.2 Oocytes recovery 

 

 Currently, there are number of methods to recover oocyte for in vitro embryo 

production. In vivo matured oocytes could be recovered from live animals using 

laparoscopic or surgical methods such as OPU that first established by the Dutch team 

(Pieterse et al., 1991). This technique enables researchers to retrieve oocytes from the 

particular donor without killing. However, laparoscopic or surgical methods are expensive 

and the yield is very small (Pawshe, Totey, & Jain, 1994). In contrast, collecting ovaries 

from slaughterhouse is a cheaper alternative with abundant source of oocytes.  

 

 There are several methods to recover oocytes from collected ovaries, but the 

most common are slicing and aspiration method. Slicing method can be done easily by 

scoring the surface of ovary using a sterile surgical blade. After scoring, the scored 

surface need to be rinse and tap on the collection medium immediately to maximize the 

oocytes recovered. Previous reports reported that slicing method yield more oocytes 

than aspiration especially in cattle and goat (Martino, Palomo, Mogas, & Paramio, 1994; 

Saleh, 2017) This statement was supported with the fact that slicing method could 

release the oocytes from surface follicles as well as follicles from the deeper cortical 

FY
P 

FI
AT



9 
 

stroma, while aspiration could release oocytes from surface follicles only (Pawshe et al., 

1994; Das, Jain, Solanki, & Tripathi, 1996).  

 

2.2 In vitro Maturation (IVM) 

 

 Oocytes recovered from the slaughterhouse are usually from various stages, 

some are immature oocytes which is in germinal vesicle stage or mature oocytes 

(metaphase II). In this study, the oocytes recovered will undergoes IVM before exposing 

to vitrification solution. This is to standardize the developmental stage of oocytes for 

vitrification. (Fasano, Demeestere, & Englert, 2012) concluded that IVM procedure is 

more efficient when it is performed before oocyte vitrification as mature oocyte has 

higher membrane permeability than immature oocytes (Fuku et al., 1992). This makes 

the access of cryoprotectant into the oocytes much easier and results in a higher survival 

rate after freezing and thawing. Besides that, mature oocytes possess stable 

ultrastructure that able to protect them from freezing damage (Thoa, Huong, Ly, Anh, & 

Huong, n.d.).   

 

2.2.1 Maturation medium 

 

 During in vitro maturation process, the immature oocytes will undergo a series of 

cytoplasmic changes and results variable competence of the embryos (Moor, Mattioli, 

Ding, & Nagai, 1990). The synthesis and storage of mRNA and protein during IVM and 

early stage of embryonic development are influenced by the composition of maturation 

medium. Hence, the role of each composition in the media has to be identified to make 

sure the oocytes are matured in a good condition (Motlík & Fulka, 1986; Sagirkaya et al., 

2007).  
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 In bovine and equine, tissue culture medium-199 (TCM-199) is commonly used to 

handle and culture the oocytes with the presence of fetal calf serum (FCS). This 

formulation of medium has significantly enhanced the maturation of oocytes and 

subsequent embryonic development compared to synthetic oviductal fluid supplemented 

with serum. However, the effect of FCS as a protein supplement was dependent on the 

maturation medium used in IVM of bovine oocytes. (Lonergan, Carolan, & Mermillod, 

1994; Sagirkaya et al., 2007; Gómez et al., 2008) 

  

 Despite adding FCS into TCM-199, the maturation medium used also containing 

steroids such as oestradiol to improve the completion of maturation changes. In bovine, 

the addition of oestradiol during IVM was reported to increase the maturation rate in 

some studies (Fukui, Fukushima, Terawaki, & Ono, 1982; Younis, Brackett, & Fayrer-

Hosken, 1989). Moreover, the addition of follicle-stimulating hormone (FSH), luteinizing 

hormone (LH) and oestradiol to a medium can improve the ability of IVM bovine oocytes 

to be fertilized (Fukushima & Fukui, 1985). However, the addition of 5 µg/ml LH in TCM-

199 failed to enhance the rate of maturation, but FSH and oestradiol did so significantly.   

 

 The formulation of Earle’s salt in TCM-199 is commonly used for incubation in 5% 

carbon dioxide (CO2). The bicarbonate buffer solution helps in maintaining the pH at 5% 

CO2 environment and provide a consistent environment for IVM (Foss, Ortis, & Hinrichs, 

2013). Before incubating, mineral oil was added onto the maturation medium to prevent 

evaporation during incubation (Tokoro et al., 2015). In this study, the oocytes were 

incubated in maturation medium for 24 hours. The 24 hours IVM protocol is widely used 

in experiment as the developmental competence of oocytes yield is similar with in vivo 
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(Heinzmann et al., 2015). Prolonged maturation should be avoided as the blastocyst rate 

and polyploidy will be decreased in cattle (Demyda-Peyrás et al., 2013). 

 

2.3  Cryopreservation 

 

 Cryopreservation is essential for widespread application of assisted reproductive 

technologies (ART). It can facilitate the storage of germplasms such as oocytes, sperm 

and embryos for a long duration yet no or little genetic alteration occur (Rodrigo Marques 

dos et al., 2006). The frozen or vitrified human embryo is proved to be able to store up to 

20 years with no effect on any of the parameters evaluated including post-thaw survival, 

rates of implantation, clinical pregnancy, miscarriage, and live birth (Riggs et al., 2010).  

 

 Recently there is a survey said that more than 50 % of transferred bovine 

embryos had been previously frozen (Thibier, 2003), this shows the freezing process is 

critical in maintaining the quality of transferred embryos. Although Parks & Ruffing (1992) 

and Aman & Parks (1994) had concluded that bovine oocytes are more difficult to freeze 

compared to embryos in cleavage stage, there are still many researches and study on 

the improvement on oocyte cryopreservation. This is because the cryopreservation of 

oocytes had efficiently decreased the dependence on the fresh oocytes. In addition, 

oocyte cryopreservation would provide a source of genetic materials with greater 

flexibility for the application of other technologies such as somatic cell nucleus transfer 

(Atabay et al., 2004). 
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2.3.1 Slow Freezing 

 

 In 1972, Whittingham et al. introduced slow freezing method and published the 

first successful cryopreservation of mouse embryos. In 1977, Whittingham reported on 

the first birth after cryopreservation of mouse oocytes in liquid nitrogen at -196ºC. In 

1983, Trounson & Mohr reported the first human pregnancy from embryo that was 

cryopreserved using slow freezing. Slow freezing is also known as equilibrium freezing 

because equilibrium will be achieved when the fluid is exchanging between extracellular 

and intracellular spaces of living cells. The speed of freezing is about 0.3 to 2°C per 

minute, which is slow enough for the water to be removed from the living cells through 

osmotic gradient created by cryoprotectant. This results in a safe freezing without any 

serious osmotic and deformation effects due to intracellular crystallization (Mazur, 1990).  

 

 Furthermore, this technique had been accepted as a safe procedure due to the 

use of low concentration of cryoprotectant that would not lead to serious toxic and 

osmotic damage. Hence, most previous study using slow freezing to cryopreserved 

ovarian tissues. However, the low concentration of cryoprotectants used might 

insufficient for preventing the crystallization to occur. This might result detrimental effects 

on living cells and reduces in quality. In addition, this technique is time consuming due to 

its low freezing rate and requires an expensive programmable freezing machine. This 

high cost and time consuming technique causing embryologists to find another 

cryopreservation protocol which is vitrification (Rezazadeh Valojerdi et al., 2009). 
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2.3.2 Vitrification 

 

 In 1985, vitrification was first reported by Rall & Fahy with a high proportion of 

mouse embryos survived after vitrification at -196°C. It was then further developed in 

animal reproduction to improve the assisted reproductive technologies. In 1999 and 2000, 

the first successful pregnancies and deliveries after vitrification of human oocytes were 

reported (Gordts et al., 1990). Until now, vitrification has been widely used to 

cryopreserve human and animal oocytes in different developmental stages (Yoon et al., 

2003; Kuwayama, Vajta, Kato, & Leibo, 2005). Vitrified oocytes gave a high survival rate 

of 80 to 85% and near 100% for blastocysts after warming (Nawroth et al., 2005). The 

terms freezing and thawing are commonly used for slow freezing while vitrifying and 

warming are used for vitrification procedures. (Rezazadeh Valojerdi et al., 2009) 

 

 According to Nawroth et al. (2005), the physical definition of vitrification is the 

solidification of a solution at ultralow temperature by extreme elevation in viscosity during 

cooling, such that the living cells are exposed to the higher concentration of 

cryoprotectant and plunged directly into liquid nitrogen. In short, vitrification is an ultra-

rapid cooling technique that requires a higher concentration of cryoprotectant to solidify 

the solution. During the vitrification process, the water will be largely replaced by the 

cryoprotectant and transform from the liquid phase to a glassy state. This production of 

glassy state will make the water behave like a solid, but without any crystallization or ice 

formation.  

 

 Crystallization or ice formation is one of the factors that can potentially decrease 

the viability of cryopreserved living cells. In order to avoid this, a higher concentration of 

cryoprotectant will be used to cryopreserve the bovine oocytes. Besides that, a rapid 
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cooling rate (15.000 to 30.000 °C/min) is also achieved by directly plunging the oocytes 

into liquid nitrogen (Babaei, Derakhshanfar, & Kheradmand, 2007). In a previous study, 

Parks & Ruffing, (1992) concluded that rapid cooling rates can efficiently reduce the 

toxicity of the cryoprotectant and also diminish the length of time oocytes are exposed to 

temperature which they are sensitive.  

 

2.3.3 Oocyte Cryopreservation 

 

 The development of oocyte cryopreservation is playing important role in the field 

of reproductive biology especially in conserving maternal genome for establishment and 

maintenance of genetic banks (Vieira et al., 2002). According to the Food and Agriculture 

Organization, about 20% of the livestock breeds in the world are currently at the high risk 

of extinction. Farm animals especially cattle are experiencing rapid artificial selection 

pressure due to the widely used of artificial reproductive techniques such as artificial 

insemination and embryo transfer (Powell et al., 2003; Sørensen et al., 2011). 

Conservation and maintenance of animal genetic resources are vitally important to 

ensure the potential to overcome the emerging disease, consumer demand changes, 

and most importantly is conserving the gene pool with available useful genes (Andrabi & 

Maxwell, 2007; Pereira & Marques, 2008). 

 

 Oocyte cryopreservation was first performed in 1958 by Sherman & Lin to 

determine the possibility of survival of post-thawed unfertilized mouse oocytes. In 1977, 

the first successful offspring from cryopreserved mouse oocytes was reported 

(Whittingham, 1977). Successful oocyte cryopreservation could assist in many ART by 

preserving the female genetic material of unexpectedly dead animals or superior breed 

stock. Oocytes are proven to be very hard to cryopreserve as they are very sensitive to 
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chilling. Their large size and low water permeability characteristic make the oocytes to 

have the tendency to retain water during chilling, and results in the formation of 

intracellular ice that would cause cryoinjury to the cell (Modello, Ricerca, & Veterinaria, 

2011). 

 

2.4 Oocyte Carrier 

 

 In order to increase the survival rate of oocytes after chilling, higher freezing and 

warming rates are needed by using a minimal volume of cryoprotectant. There are many 

types of oocyte carrier available during vitrification such as cryotop, cryoleaf, open-pulled 

straw (OPS). Higher freezing rate was proven to be able to facilitate vitrification with a 

lower concentration of cryoprotectants, while higher warming rate can prevent the 

occurrence of devitrification (S.-U. Chen & Yang, 2009). A high freezing and warming 

rates of oocyte carrier can bypass the cryoinjury by rapidly pass through the damaging 

temperature zone, which is in between 15ºC and −15ºC (Martino, Songsasen, & Leibo, 

1996).  

 

2.4.1 Open-pulled Straw (OPS) 

 

 OPS method was developed by Vatja and his team in 1988. This technique was 

reported to be able to reduce the cryoinjury on bovine oocytes and embryos. The OPS 

straw was derived from mini French straws that pulled and thinned to approximately half 

of the original diameter by heating. According to Vajta, Lewis, Kuwayama, Greve, & 

Callesen (1998), the freezing rates of OPS straw was enhanced to 20,000ºC/min, which 

is 8 times higher than the original. This higher freezing rate with the reduced volume of 

cryoprotectant successfully minimized the cryoinjury towards oocytes. Besides that, the 
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fracture damage due to the changes of pressure was avoided due to the open end of 

OPS straw (G. Vajta, Booth, Holm, Greve, & Callesen, 1997). This low cost and simple 

technology give an alternative for the vitrification of oocytes (Vieira et al., 2002). 

 

2.5 Cryoprotectant 

 

 Cryoprotectant is essential in cryopreservation process as the solution able to 

protect the living cells from damage during cooling or freezing process. The living cells 

are usually exposed to cryoprotectants before vitrification to avoid the formation of ice in 

the cell. In 1985, Rall and Fahy successfully vitrified 8-cell mouse embryos by using a 

medium consisting 20.5 % (w/v) DMSO, 15.5% (w/v) acetamide, 10% (w/v) propylene 

glycol and 6% (w/v) polyethylene glycol at the temperature of 4°C. During the treatment 

of cryoprotectants, the cryoprotectants used will penetrate into the cells and gained the 

access to all parts of the system. 

 

 However, the high concentration of cryoprotectant used in vitrification might 

cause toxicity to the vitrified living cells. There are several barriers to the free diffusion of 

membranes and resulting in changes of compartment volumes which is damaging the 

cells. Hence, the diffusion process of cryoprotectants and osmosis having important 

effects to the vitrification (David E. Pegg, 2015). Therefore, the optimal ratios of the 

equilibration time and toxic effect of cryoprotectant is very important before vitrification or 

cooling as well as the removal time of cryoprotectant after warming (D E Pegg & Diaper, 

1988).  

 

 Ali & Shelton (1993) developed another formulation of cryoprotectant with EG 

based. The vitrification solution consisting of 5.5 M EG and 1.0 M sucrose to reduce 
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toxicity, and also permitted the equilibration steps to be performed at room temperature. 

In 2000, S. U. Chen et al. used this formulated solution for vitrification of human oocytes 

and recorded high survival rates by conventional straws. Ethylene glycol was commonly 

used as a basic permeable cryoprotectant due to its low toxicity level or combined with 

DMSO for vitrification (Kasai, 1996). The concentrations of EG and DMSO used in the 

present study were based on those used for the successful vitrification of bovine ova and 

embryos.  

 

 Two-step strategy had been developed and mainly used in cryopreservation 

recently. The living cells are exposed to two different concentration of vitrification solution 

where the pre-treatment solution is much less toxic due to lower concentration and 

followed by a higher concentration solution for a shorter time. The pre-treatment solution 

is used to reduce the time needed for exposure to the subsequent vitrification solution 

which is more toxic to oocytes. This two-step strategy had been demonstrated using 

human oocytes and recorded a significantly higher survival rate than those without pre-

treatment.  

 

2.5.1 Permeating Agent 

 

 Cryoprotectants are classified into two types, permeating and non-permeating 

agent according to their cell penetrating capacity (Brambillasca et al., 2013). Permeating 

agents are small molecules that able to form hydrogen bonds with water molecules, thus 

inhibiting the formation of ice crystal in a cell during vitrification. High concentration of 

permeating agent could solidify the water into glassy state and satisfy the goal of 

vitrification (Modello et al., 2011). DMSO and EG are the most common permeating 
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agents used in cryopreservation. DMSO is widely used in different protocols over 

decades and used in the combination with EG. This combination results a lower toxicity 

by reducing the concentration of single cryoprotectant (Chian et al., 2005; Hiraoka, 

Hiraoka, Kinutani, & Kinutani, 2004). 

 

2.5.2 Non-permeating Agent 

 

 The most used non-permeable cryoprotectant in mammalian oocyte 

cryopreservation is sucrose solution. In contrast to the permeating agent, sucrose 

remains extracellular and facilitating dehydration. When sucrose is used in the 

combination of permeating agent, the water inside the cell will be drawn out and resulting 

dehydration. This process further assists the permeating agent in preventing the 

formation of ice crystal (Modello et al., 2011). Moreover, sucrose is also playing 

important role in thawing or warming process. It acts as an osmotic buffer to draw the 

water generated by melting ice rapidly, to prevent the excessive swelling, or even rupture 

of the cell during the removal of cryoprotectant (Martínez et al., 2002). 

 

 

2.6 Transportation of oocytes 

 

 There are mainly four modes of transportation which are road, air, rail and marine 

transport. Generally, oocyte transportation will use road and air freight transportation to 

reach other facilities. Both modes are fast and precise, allowing the oocytes to be 

transported to other facilities in shortest time and minimum damage potential. However, 

there are few reports describing the effect of transportation on oocyte viability in positive 

and negative way. According to Vandenberg, Stevenson, & Levin (2012), the vibration 
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was suggested to have negative effect on embryo morphogenesis. McDonald et al. 

(2011) demonstrated that survival rate obtained 3 hours after thawing of shipped, vitrified 

oocytes was significantly lower than non-shipped vitrified oocytes (73.3% vs. 96%, 

P<0.01).  

 

 On the other hand, studies reported that 2 hours of transportation at 37ºC does 

not give significant effect on the fertilization, cleavage, and implantation rates of oocytes 

(Alfonsín et al., 1998). The developmental competence of transported group was similar 

with the group of oocytes that cultured after aspiration. Isachenko et al. (2011) had also 

reported a low mechanical agitation of 6 hertz (Hz) had dramatically increase pregnancy 

rate of in vitro culture human embryos.  

 

2.6.1 Vibration 

 

 According to Salvendy (1997), vibration can be defined as oscillatory motion or 

mechanical oscillation. It is also known as repetitive motion of an object and measurable 

in hertz (Hz). Regardless of the modes of transportation, the shipped oocytes will subject 

to one of the major dynamic hazards, vibration. The intensity of vibration experienced by 

shipped oocytes depends on the type of transportation used. Different modes of 

transport will produce different level of vibration (Dunno, 2014). 

 

 Inside a truck, vibration can be classified into shake, shimmy, and shudder. 

Shudder is known as brake vibration where the vibration transmitted across the hydraulic 

lines to the entire body during braking. When a truck is driving at a speed range of 60 – 
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80 kilometer per hour, the frequency of brake vibration will be in the range of 5 to 30 Hz 

(Matijević & Popović, 2017). Moreover, the road condition is also one of the factors of 

vibration. A low frequency of vibration (4 – 6 Hz) caused by rolling tires on rough road 

could increase the damage potential to vitrified oocytes (Nahvi, 2009). During 

transportation, the resonance frequency of whole-body vibration was recorded in 

between 4 – 5 Hz. According to Boyd, Cholewa, & Papas (2008), the vibration frequency 

that result the highest damage to the fruits shipped was in the range of 2 – 5 Hz. In order 

to simulate the transportation of truck using these values recorded, the vibration 

frequency of 5 Hz which equivalent to 300 rpm was used in this study. 

 

 As for airplanes, the frequency of vibration obtained during 13 flights under 

normal weather condition was referred. According to NASA (1975), the average 

frequency of vibration is around 3 Hz. Generally, oocytes are transporting internationally 

using two jet airplanes, which is same with the commercial airplanes. During the flight, 

the aircraft might experience some fine vibration caused by the cloud or bad weather 

condition.  

 

2.7 Liquid Nitrogen 

  

 Nitrogen is a non-toxic, odorless and colorless element. It is relatively inert and 

not flammable like oxygen. On April 15, 1883, two Polish physicists named Zygmunt 

Wróblewski and Karol Olszewski were first successfully liquefied nitrogen. The liquid 

nitrogen has a very low boiling point which is 77K (-195.8°C or −320.4°F) under normal 

pressure. Since the liquid to gas expansion ratio is very high, which is about 1:694, the 

liquid nitrogen will boil very quickly to fill a volume of nitrogen gas. Liquid nitrogen has to 
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be stored in special insulated containers that are vented to prevent pressure build-up 

and the storage duration is depends on the design of the containers called dewar or flask.  

 

 Liquid nitrogen has been widely used in cryopreservation as a cryogen where 

ultralow temperatures or rapid temperature reduction is required. The extremely low 

boiling point (– 195.8°C) makes it an excellent coolant as it evaporates when released 

and able to absorbs large quantities of heat. This characteristic enables liquid nitrogen to 

freeze the living cells upon contact. Many scientists prefer to store their biological sample 

by completely immersing it in liquid nitrogen due to the constant low temperature (– 

196°C) characteristic (Lim et al., 2010).  

 

2.8 Fluorescein Diacetate (FDA) 

 

 Fluorescein diacetate (FDA) is a non-polar, non-fluorescent fatty acid ester with 

the attachment of acetyl groups. The acetyl groups in the structure enable the FDA to 

diffuse through viable cell membranes passively. When FDA enters the cell, the 

intracellular esterase will de-acetylate it into fluorescein and acetic acid. The charged 

fluorescein is unable to pass through the cell membrane, hence retain in the cytoplasmic 

membrane and serve as an indicator of viable cells. FDA was first used by Rotman and 

Papermaster to evaluate the viability of mammalian cells (Kvach & Veras, 1982 ; Boyd, 

Cholewa, & Papas, 2008); now it is widely used in combination of propidium iodide (PI).  

 

 FDA is a very common assay probes used in cell viability evaluation. Stained 

cells will be incubated in the dark for 5 minutes and observed under fluorescence 

microscope with FITC filter. Under this filter, a blue light will be emitted to excite the 

fluorescent molecules in the stained cells. The maximal excitation and emission intensity 
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of FDA are 492 and 519 nanometre respectively (Hyka, Lickova, Přibyl, Melzoch, & 

Kovar, 2013). Green fluorescence will be observed on viable cells while dead cells will 

remain non-fluorescent.  
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CHAPTER 3 

 

MATERIALS AND METHOD 

 

 

3.1 Method 

 

3.1.1 Oocyte Recovery 

 

 Ovaries were collected from Department of Veterinary Services (DVS) 

slaughterhouse at Shah Alam, Selangor, and transported to laboratory in a bottle 

containing 0.9% sodium chloride at 38°C. The collected ovaries were processed within 1 

to 2 hours after collection to maintain their quality. First, the ovaries were washed using 

phosphate buffer solution (PBS) with 0.01 g/mL of streptomycin, followed by two times 

washing using PBS only. The washing procedure was done in water bath at the 

temperature of 38°C, followed by oocyte recovery using slicing technique. For each 

replicates, three ovaries were sliced using a No. 10 blade to retrieve oocytes. All visible 

cumulus-oocyte-complexes (COCs) with one or more complete layer of cumulus cells 

were selected under stereomicroscope (Nikon Instruments Inc.). 

 

3.1.2 Modification of Open-pulled Straw 

 

 Oocytes were vitrified using the OPS method that described by Vatja et al. (1998). 

Each 0.25 mL capacity semen straw was softened over a hotplate and pulled from both 

ends to reduce its diameter evenly to approximately half of the original. The lengthened 

straw was cut at the opposite end of cotton plug to make it approximately 13 – 15 cm 
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long. The thinning process increases the volume rate and hastens the cooling rate of the 

droplet that containing the oocytes (Grizelj et al., 2009). 

 

 

Figure 3.1: Cane setup with OPS 

 

3.1.3 In vitro Maturation of COCs 

 

 Selected COCs were washed with PBS and maturation medium twice each 

before placing in pre-incubated maturation medium. The procedure of in vitro maturation 

was from those of Lee & Fukui (1995) with modification. The maturation medium 

consisting of TCM-199 (with Earle’s salt) supplemented with 10% fetal calf serum (FCS), 

5 µg/ml follicle-stimulating hormone (FSH) and 1 µg/ml oestradiol. Before placing 

selected oocytes, the maturation medium was covered with mineral oil and placed into 

carbon dioxide (CO2) incubator (Heraeus® HERAcell®, Thermo Fisher Scientific, US) for 

1 hour at 38°C. After washing, the selected COCs were incubated for 24 hours in CO2 

Cane 
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incubator at 38°C. At the end of IVM, the oocytes were denuded by repeat pipetting in 

PBS that containing 1 mg/ml of trypsin for 1 minute. 

 

3.1.4 Vitrification of Mature Oocytes 

 

 Denuded oocytes were first equilibrated using equilibrium solution composed of 

7.5% dimethyl sulfoxide (DMSO) and 7.5% ethylene glycerol (EG) in PB1 for 2 minutes, 

then transferred to vitrification solution composed of 15 %DMSO/EG, and 0.5  

mol/L sucrose for 45 seconds. Oocytes were loaded into the straw via capillary action, by 

placing the end of the OPS into the droplet, and immediately plunged into liquid nitrogen 

(LN2) for vitrification.  

 

3.1.5 Transportation using Liquid Nitrogen 

  

 Vitrified oocytes were being divided into three groups; one serves as control 

group and two experimental groups. The control group remained in the cryotank and not 

transported while experimental groups were given vibration load of 300 and 180 rpm on 

shaker (Edmund Bühler) for 1 hour to mimic transportation of truck and airplane, 

respectively. LN2 was replenished every 30 minutes to ensure the OPS were fully 

immersed. 
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Figure 3.2: The setup of transportation simulation 

 

3.1.6 Warming of Vitrified Oocytes 

 

 After 1 hour, the straws were taken out from the polystyrene box and held in the 

air at room temperature for a few seconds. The cotton plug end of OPS was cut to 

unload the oocytes into the droplet of 0.5 M sucrose in PB1 for 10 minutes, followed by 

0.25 M sucrose for 3 minutes immediately.  

 

3.1.7 Evaluation of Oocyte Viability 

 

 The viability of post-warmed oocytes was evaluated by using fluorescein 

diacetate (FDA) staining. Oocytes were washed several times using PBS and stained 

with FDA solution followed by incubation at room temperature for 10 minutes in the dark. 

Then, oocytes were evaluated using fluorescent microscope (Nikon Eclipse Ti-S) after 

Shaker 

Open-pulled straw 

Liquid nitrogen 

Polystyrene box with 
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washing with PBS. The numbers of oocytes that show green fluorescence under 

fluorescent microscope were recorded as viable oocytes.  

 

3.1.8 Statistical Analysis of Data 

 

 Statistical analysis was performed using IBM SPSS Statistic Program (IBM 

Corporation, UK). One-way ANOVA test was used to evaluate the significance of 

differences among treated groups. P values of <0.05 were considered statistically 

significant.   
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CHAPTER 4 

 

RESULTS 

 

 

 In this study, three ovaries were sliced to retrieve oocytes for each replicates.  

Table 4.1 shows a total of 110 oocytes which were retrieved from 9 ovaries indicating an 

average of 12 oocytes per ovary. 

 

Table 4.1: Number of oocytes retrieved from ovaries collected from 

slaughterhouse 

Replicates Ovaries collected (N) Oocytes retrieved (n) 

I 3 33 

II 3 38 

III 3 39 

Total 9 110 

 

 As shown in Table 4.2, all groups in replicate I had 0% viability. According to 

replicates II and III, there was no significant differences (P > 0.05) in the viability of 

oocytes from the control group and experimental groups that were given vibration loads 

of a truck and an airplane. The oocytes from the control group were remained vitrified in 

the cryotank (not exposed to any transportation condition for 1 hour) gave a high 
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viabilities of 100% and 90%. The vibration load of 300 rpm and 180 rpm that mimicked 

transportation by truck and airplane respectively did not affect the viability of post-

warmed oocytes. Both groups of post-warmed oocytes gave 100% of viability in 

replicates II and III.  

 

Table 4.2: Viability of post-warmed oocytes from each group after 1 hour of 

mimicked transportation 

Group Replicates Vitrified 
oocytesa (n) 

Retrieved 
oocytesb (n) 

Degenerated 
oocytesc (n) 

Viabilityd 

Control 
(Static) 

I 5 5 2 0

3
 (0%) 

 II 7 6 0 6

6
 (100%) 

 III 10 10 0 9

10
 (90%) 

Truck 
(300 rpm) 

I 6 6 0 0

6
 (0%) 

 II 7 7 1 6

6
 (100%) 

 III 11 11 0 11

11
 (100%) 

Airplane 
(180 rpm) 

I 10 0 0 0

0
 (0%) 

 II 12 12 0 12

12
 (100%) 

 III 12 1 0 1

1
 (100%) 

a Number of oocytes vitrified 
b Number of oocytes successfully retrieved after warming 
c Number of oocytes with broken zona pellucida 
d Number of retrieved oocytes that show positive staining with fluorescein diacetate (FDA) 
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 Since all oocytes in the first replicate did not show any green fluorescence, the 

viability was calculated using replicates II and III only. The viability of post-warmed 

oocytes under different vibration loads are summarized in Table 4.3. The retrieval rate of 

the airplane group was lower than the control and truck group due to technical errors. 

However, the average viability of post-warmed oocytes of control, truck and airplane 

groups were similar, 95%, 100% and 100%, respectively. Result showed there was no 

significant difference (P > 0.05) in between the viability of post-warmed oocytes of 

control, truck and airplane group even though the transportation conditions were different. 

 

Table 4.3: Viability of post-warmed oocytes under different vibration frequencies 

Group Control 
(Static)  

Truck 
(300 rpm) 

Airplane 
(180 rpm) 

Total number of vitrified oocytes 
(mean ± SD) 

8.50 ± 2.12 9.00 ± 2.83 12.00 ± 0.00 

Retrieval ratee (%) 94.12 100.00 54.17 

Viabilityf (%) 95 100 100 
e % of vitrified oocytes that successfully recovered from the OPS after warming 
f % of viable oocytes that show green fluorescence after staining 

 

 Figure 4.1 shows the comparison of post-warmed oocytes with bright field and 

with FITC filter. Oocytes that show green fluorescence despite the light intensity were 

considered as viable oocytes. In the control group, there was one non-viable oocyte 

(arrowed) that did not show any green fluorescence.  
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Figure 4.1: Image of post-warmed oocytes captured under fluorescence 

microscope with bright field and FITC filter. (A,B) Control group. (C,D) Truck group. 

(E,F) Airplane group 
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CHAPTER 5 

 

DISCUSSION 

 

   

 Oocyte cryopreservation provides a greater flexibility in animal breeding 

compared to embryo cryopreservation. The ability to preserve maternal genome routinely 

enables researchers and breeders to produce offspring via in vitro fertilization of vitrified 

oocytes and selected male germplasm. However, some facilities are not able to perform 

in vitro fertilization such as intracytoplasmic sperm injection (ICSI) due to the limitations 

of specialized equipment and the presence of a skilled embryologist. Hence, the vitrified 

oocytes need to be transported to other facilities while maintaining the quality of oocytes 

upon arrival. By using the various modes of transportation, vitrified oocytes are subjected 

to a dynamic hazard which is vibration. Vibrations could cause damage to the complex 

structure of oocytes and result in a drop of viability. In this study, vibrations were 

concluded to have no significant effect on the viability of transported vitrified bovine 

oocytes.  

 

 In order to simulate transportation by truck and airplane, the vitrified oocytes were 

divided randomly into two experimental groups, and subjected to vibrations of 300 rpm 

and 180 rpm respectively. The transportation simulation was conducted for 1 hour to 

represent the transport motion. The transport time in this study is the actual ‘in motion’ 

time but not the duration of the travel. If, for example, the vehicle needs to travel for 1.5 

hours to reach another facility, the accumulated ‘in motion’ time would be about 1 hour. 
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The vibration might be caused by poor road conditions at certain parts of the journey 

which results in a noticeably higher vibration level.  

   

 Among the four modes of transportation (rail, road, marine and air), road 

transport is the most common mode of shipping goods and materials. Many facilities use 

land transport to deliver their vitrified oocytes as it is quick and flexible. Moreover, the 

cost is cheaper compared to air cargo. This makes road transport the first choice for 

local transportation. However, in the same amount of travel time, a truck cause higher 

vibrations compared to an airplane that is flying in smooth air (Kipp, 2008). During a one 

hour journey, a truck can transmit an average of 5 Hz (300 rpm) of vibration (Boyd et al., 

2008; Matijević & Popović, 2017; Nahvi, 2009) while airplanes produce a lower vibration 

frequency of around 3 Hz in average (Catherines, Mixson, & Scholl, 1975). 

 

 Thus, a mechanical vibration at the frequency of 300 rpm was applied to the 

vitrified oocytes for 1 hour to mimic truck transportation. The vibrations in vertical 

direction were not monitored in this study due to the limitations of the equipment. The 

shaker used in this study has an orbital movement, which means that it moves not only 

laterally but also longitudinally. This is similar to the vibration of a truck that is steadily 

driven and the road is on average in good condition. Thus, it can correlates with our 

results. In the present study, the vibration of 300 rpm (5 Hz) does not give significant 

adverse effect to the oocytes viability (P > 0.05). The post-warmed oocytes from the 

truck group gave a high viability (100%) and showed green fluorescence after staining 

with fluorescein diacetate (FDA).  
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 As for airplanes, NASA (1975) reported more than 90% of the vibration energy 

measured on the airplanes occurred in the range of 0 – 3 Hz. The vibration frequency 

was obtained during 13 flights under normal weather conditions using two jet aircrafts 

that were widely used in commercial airlines. Generally, a central laboratory will utilize 

direct airline flights to transport oocytes to their destination in order to minimize 

transportation risks and potential hazards. Furthermore, air freight transportation is 

preferable when it comes to international collaboration or trading. The barriers of country 

boundaries or long distance could be overcome by using air freight transportation. 

    

 In this study, the high viability (100%) was recorded from the oocytes in the 

airplane group. This indicating the vibration frequency of 180 rpm does not cause 

significant harm or damage to the oocytes viability. Recently, mechanical vibration was 

proven to have beneficial effects on oocyte and embryo development. A study on the 

effect of mechanical vibration reported that cytoplasmic maturation of in vitro matured pig 

oocytes could be enhanced after the vibration treatment. The mechanical vibration did 

not give any effect on the maturation rate but the blastocyst formation rate of oocytes 

matured with mechanical vibrations were significantly higher than the oocytes matured 

without vibration treatment (Mizobe, Yoshida, & Miyoshi, 2010).  

 

 In addition, Isachenko et al. (2011) indicated that short intervals of mechanical 

vibrations could increase the developmental rates of human embryo cultured in vitro 

while not affecting the fertilization rate of oocytes. The mechanical vibration serves as a 

stimulation that induces or activates cell-to-cell communication and this intercellular 

communication was proposed to have the ability to establish cell co-operation by co-

ordinating the cell’s activity. In effect, the cell system will be able to respond to the 

stimulus which is essential in cell differentiation. 

FY
P 

FI
AT



35 
 

 

 The results obtained from the present study showed that there were no significant 

differences (P>0.05) between viability of control group and experimental group. The 

oocytes that were exposed to different vibration frequencies gave similar percentages of 

viability as the control group (95% vs 100% vs 100%, P>0.05). These findings 

demonstrated that vibration occurred during truck and air freight transportation does not 

have a detrimental effect on the viability of vitrified bovine oocytes. This statement was 

supported by Alfonsín et al. (1998) that suggested transportation do not contribute 

harmful effects on oocyte quality. However, lower viability was recorded in the control 

group compared to the truck and airplane groups. This could be due to technical errors 

during the experiment. As mentioned earlier, oocytes are extremely sensitive especially 

in in vitro conditions. Several factors such as repetitive pipetting that is too frequent, 

overexposure to cryoprotectant or fluctuation of temperature could harm the complex 

structure of oocytes and causing it to lose its viability. 

  

 In order to evaluate the viability of post-warmed oocytes, each group of oocytes 

were stained with FDA and incubated in the dark. FDA stain is a fluorescent dye 

commonly used for rapid evaluation of mammalian oocyte viability. During staining, the 

non-fluorescent substrates in FDA will diffuse into oocytes passively and hydrolysed by 

esterase to produce polar fluorescent products called fluorescein. These fluorescein will 

accumulate in the cytoplasm as they are unable to pass through the intact cell 

membrane, therefore giving a green fluorescent appearance to the viable oocyte as 

shown in Figure 4.1 (Hyka et al., 2013). However, the oocyte (indicated with arrows) did 

not show any green fluorescence after staining (Figure 4.1). This indicates that the 

oocyte is no longer viable or is dead. A dead oocyte will show distinct loss of polar 

fluorescent products and remain non-fluorescent.  
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 Different intensities of green fluorescence were observed after staining (Figure 

4.1). Three factors affecting the intensity of the fluorescence are the influx of FDA, cell 

membrane integrity and esterase activity (Boender, 1984). From the result, the low level 

of green fluorescence could be interpreted as poor esterase activity in the oocytes. As 

mentioned above, esterase is needed to produce the polar compounds called fluorescein. 

When the esterase is not able to produce certain amounts of fluorescein, a lower level of 

green fluorescence will be observed. However, the oocytes were technically not dead but 

not quite as robust due to the poor esterase activity (Boyd et al., 2008).  

 

 The present study had recorded 0% of viability for all groups of oocytes from the 

first replicate as these oocytes showed non-fluorescence during the evaluation. The 

failure of staining might be due to the FDA working solution that was prepared a few 

days earlier. A study demonstrated that the time duration after preparing FDA working 

solution will affect the staining result. In their experiment, the viability score of the sample 

using a two hour old solution was recorded less than half of the score of those using a 

newly prepared solution. Pinillos & Cuevas (2008) stated that properties of FDA will be 

lost 1 hour after preparation and recommended for it not to be used for viability 

evaluation. In order to solve this problem, a newly prepared FDA working solution was 

used for each staining and positive staining results were obtained.  

 

 Before vitrification, matured oocytes were expected to be produced after 24 hours 

of incubation. However, all oocytes were remained immature and did not show polar 

bodies after in vitro maturation (IVM). There are three factors affecting the IVM which are 

the presence of cumulus cells, culture conditions and the composition of IVM media (Le 

Du et al., 2005; Papanikolaou et al., 2005). The factor that most likely caused the failure 
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of maturation was the culture environment. When the media or culture environment is 

contaminated by microorganisms, the maturation rate will be affected. However, there 

are studies that reported that the survival rate of vitrified immature and matured oocytes 

is similar (Cao & Chian, 2009; Wang, Racowsky, & Combelles, 2012), thus, the changes 

at the developmental stage of oocytes during vitrification was assumed to have no 

effects on the viability after transportation. 

 

 Even though the oocytes failed to mature, the results obtained in this study could 

contribute to the data on immature oocytes. The number of experiments using immature 

oocytes is low, especially for transportation after vitrification. Vitrification of oocytes is 

usually performed at two stages: germinal vesicle (GV) and metaphase II (MII). The 

developmental stages of oocytes during vitrification is still a matter of debate, some 

reports concluded that oocyte vitrification should be performed at the MII stage due to 

the high membrane stability during chilling (Le Gal & Massip, 1999; Ledda et al., 2007). 

However, cryopreserving mature oocytes could damage the microtubular spindle and 

result in chromosomal aberrations, increasing polyploidy, and fertilization impairment (S. 

U. Chen et al., 2003; Tharasanit, Colenbrander, & Stout, 2006).  

 

 Cryopreserving immature oocytes becomes one way of circumventing this 

problem as the spindle system is not yet organized and genetic material are protected 

within the nucleus (Rodrigo Marques dos et al.,2006; Prentice & Anzar, 2010). 

Nevertheless, IVM is required after warming. Previous reports reported that 

cryopreservation will result in damage and loss of cumulus cells in immature oocytes 

(Hochi, Fujimoto, Braun, & Oguri, 1994). Cumulus cells are crucial in cell maturation 

especially in the first hour of IVM (Kastrop, Hulshof, Bevers, Destrée, & Kruip, 1991; 

Bruynzeel, Merton, Wijst, Hazeleger, & Kemp, 1997; Gilchrist, Ritter, & Armstrong, 2004). 
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Without the presence of cumulus cells, the maturation rate would be affected. 

Cryopreserving oocytes have been proven to be very difficult regardless of the 

developmental stages. If IVM needs to be done after vitrification, the best 

cryopreservation protocol is needed to maintain the quality of oocytes and cumulus cells. 

Thus, up to date, MII is still the preferable stages for vitrification (Modello et al., 2011).  

 

 Furthermore, the quality of ovaries could also contribute to the maturation 

process. In this experiment, the oocytes were recovered from ovaries that were collected 

from slaughterhouse. This is the most common source of oocytes as it is economical and 

allows for large scale embryo production. However, the sources of ovaries are highly 

variable in terms of breed, age, reproductive ability and disease background. These 

factors could contribute to the quality of oocytes. Besides that, the condition of the ovary 

could also affect the quality of oocytes. In 2015, Karamishabankareh, Hajarian, 

Shahsavari, & Moradinejad proven that the oocytes retrieved from the right ovary had 

greater developmental competence than the left side. Different follicle sizes and 

diameters would lead to different developmental competence especially in ovaries that 

were collected from the slaughterhouse (Priscilla & Balakrishnan, 2011). 

 

. 
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CHAPTER 6 

 

CONCLUSION AND RECOMMENDATION 

 

 

6.1 Conclusion 

 

 Throughout this study, analysis of results suggested that the vibrations that 

occurred during truck and air freight transportation did not have harmful or adverse 

effects on the viability of oocytes. There was no significant difference between the 

viability of oocytes in the control group and vitrified oocytes that were exposed to 

vibrations for one hour (P>0.05). This study contributes beneficial information to 

researchers to feel secure and comfortable in transporting vitrified oocytes. Moreover, 

the viability of both groups of oocytes was recorded to be the same which is 100%. This 

high percentage of viability showed that mechanical vibration was not a limiting factor in 

transport for assisted reproductive technologies. In contrast, it was suggested to have 

beneficial effects on oocytes and embryo development. The mechanical vibration seems 

to be able to induce cell-to-cell communication and establish cell co-operation. However, 

the mechanism of transforming the extracellular mechanical signal into intracellular 

signals is still unknown and requires further study.   
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6.2 Recommendation 

  

 In order to improve the effectiveness of transport assisted reproductive 

technology, further investigation on the fertility of transported vitrified oocytes is needed. 

In vitro fertilization could be conducted in the future using transported vitrified oocytes to 

determine the fertilization, cleavage and blastocyst development rates. Furthermore, the 

source of oocytes for further study could be changed from slaughterhouse to live animals 

using the ovum picked-up (OPU) technique. By using OPU technique, the intrinsic 

factors of the oocytes such as age and breed of the donor can be manipulated.  

 In addition, the effect of vibration on the viability of mature oocytes could be 

investigated in future work. In this study, vitrification was done using immature oocytes 

due to the failure of in vitro maturation (IVM). Even though immature oocytes were 

proven to be more resistant to cryoinjury, the blastocyst formation rate of immature 

oocytes was much lower than mature oocytes. Hence, taking into the consideration of 

the developmental competence, it is better to perform vitrification in mature oocytes. 

Moreover, vitrification procedures might also cause detrimental effects on the maturation 

capacity of the oocytes. In order to prevent development failure, IVM should be carried 

out before vitrification to ensure all groups of oocytes are matured.  
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APPENDIX A 

 

 

Table A.1: One-way ANOVA 

ANOVA 

VIABILITY 

 Sum of Squares df Mean Square F Sig. 

Between Groups 33.333 2 16.667 1.000 .465 

Within Groups 50.000 3 16.667   

Total 83.333 5    
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APPENDIX B

Figure B.1: Developmental stages of oocyte  

Taken from: Lucie Nováková & Bětka Blanková. (n.d).  

 

 
 

Figure B.2: Transportation setup 

FY
P 

FI
AT




