

The Effect of Addition Two Different Thickening Agent (Gelatine and Carrageenan) for Shelf Life and Physicochemical Properties In Grass Jelly

Nurul Atikah Binti Isma<mark>il</mark>

F15A0182

A thesis submitted in fulfilment of the requirement for the degree of Bachelor of Applied Science (Product Development Technology) with Honours

> Faculty of Agro Based Industry Universiti Malaysia Kelantan

2019

DECLARATION

I hereby declare that the work embodied in this report is the result of the original research and has not been submitted for a higher degree to any universities or institutions.

Student

Name: Nurul Atikah Binti Ismail

Date:

I certify that the report of this final year project entitled "The Effect of Addition Two Different Thickening Agent (Gelatine and Carrageenan) for Shelf Life and Physicochemical Properties In Grass Jelly" by Nurul Atikah Binti Ismail, matric number F15A0182 has been examined and all the correction recommended by examiners have been done for the degree of Bachelor of Applied Science (Product Development Technology) with Honours, Faculty of Agro-Based Industry, University Malaysia Kelantan.

Approved by,

Supervisor

Name: Dr. Maryana Binti Mohamad Nor Date:

ACKNOWLEDGEMENT

BISMILLAHIRRAHMANIRRAHIM... In the name of Allah Taala, The Most Gracious, with the God's help and His amazing grace, I'm finally completing this final year project (FYP) after through the challenging. I had learned many things throughout this period including true research work environment. This research has been completed with helping from generous individuals that give their energy and time without any doubt. I would like to express my appreciation to their efforts and kindness.

First and foremost, I thank my amazing supervisor, Dr Maryana Binti Mohamad Nor for her invaluable guideline, suggestions, encouragement and help throughout this research of study. I also want to express my appreciation and thanks to Dr Nur Anis Binti Arzami, my co-supervisor, who kindly provided me with her knowledge, guidance and advice in carrying out this study as well as completion of this thesis.

I also would like to say a lot of thanks to all staffs member at Laboratory because had gave their commitment and help along the journey of experiment. Not forgot to all my truly friends which acts as a spirits around me and thanks for our memorable moments.

Last but not least, I would like to express my lovely appreciation to my beloved family especially my parents, Ismail Bin Hashim and Zaini Binti Ismail for their endless encouragement, concern, patience and sacrifices which has helped me in undertaking and completing this study. I could not be in this way and completing this research work without their support. Lastly, thanks to all that had been involved throughout my journey to completing this thesis. ALHAMDULILLAH!

TABLE OF CONTENTS

	PAGE
DECLARATION	ii
ACKNOWLEDGEMENT	iii
TABLE O <mark>F CONTENT</mark>	iv-vii
LIST OF TABLES	viii-ix
LIST OF FIGURE	x-xi
LIST OF SYMBOL AND ABBREVIATION	xii
ABSTRACT	xiii
ABSTRAK	xiv
CHAPTER 1: INTRODUCTION	1
1.1 Research background	1-2
1.2 Problem statement	2
1.3 Hypothesis	3
1.4 Objectives	3
1.5 Scope of study	4
1.6 Significance of study	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Grass Jelly and Its Application	5
2.1.1 Morphology of Grass Jelly	6
2.1.2 Benefits of Grass Jelly	6
2.1.3 Nutritional Value of Grass Jelly	7

2.2 Thickening Agent Added In Grass Jelly	7
2.2.1 Gelatine	7-8
2.2.2 Carrageenan	8
2.2.3 Corn Flour	8-9
2.2.4 Sweet Potato Flour	9
2.3 Shelf Life of Grass Jelly Using Spread Plate Method	9-10
2.4 Analysis of Grass Jelly Made With Gelatine and Carrageenan	10
2.4.1 pH Value	10
2.4.2 Texture	10
2.4.3 Colour	11
2.4.4 Percentage of Brix	11
CHAPTE <mark>R 3: MATE</mark> RIALS AND METHOD	12
3.1 Materials, apparatus and equipment	12
3.1.1 Raw Materials	12
3.1.2 Apparatus	12
3.1.3 Equipment	13
3.2 Methods	13
3.2.1 Extraction of Grass Jelly Leaves	13
3.2.2 Production of Grass Jelly Agar	13-14
3.2.2.1 Addition of Gelatine	14-15
3.2.2.2 Addition of Carrageenan	15-16
3.3 Production of Grass Jelly Drink	16
3.4 Determining Shelf Life of Grass Jelly Agar	16-17
3.5 Determining Colour of Grass Jelly Agar	17
3.6 Determining Texture of Grass Jelly Agar	17

3.7	Dete	ermining pH Value of Grass Jelly Agar and Drink	18
3.8	Dete	ermining Brix Concentration of Grass Jelly Agar and Drink	18
3.9	Dete	ermining colour of Grass Jelly Drink	18
3.10	Stat	istical Analysis	18
CHA	APTER	R 4: RESULTS AND DISCUSSION	19
4.1	Scree	ening Percentage of Gelatine and Carrageen	19-20
4.2	Physic	cochemical Analysis for Grass Jelly Agar	21
	4.2.1	pH Analysis for Grass Jelly Agar	21-22
		4.2.1.1 Effect of Different Concentration of Thickening	
		Agent on pH Value of Grass Jelly Agar	23
	4.2.2	Brix Analysis for Grass Jelly Agar	23-24
		4.2.2.1 Effect of Different Concentration of Thickening	
		Agent on Brix Value of Grass Jelly Agar	24-25
	4.2.3	Colour Analysis for Grass Jelly Agar	25-29
	4.2.4	Texture Profile Analysis for Grass Jelly Agar	30-35
4.3	Physic	cochemical Analysis for Grass Jelly Drink	36
	4.3.1	pH Analysis for Grass Jelly Drink	36-37
		4.3.1.1 Effect of Different Concentration of Thickening	
		Agent on pH Value of Grass Jelly Drink	38
	4.3.2	Brix Analysis for Grass Jelly Drink	38-39
	4.3.3	Colour Analysis for Grass Jelly Drink	40-41
4.4	Shelf	Life of Grass Jelly	41
	4.4.1	Plate Incubate at Temperature 37 ⁰ C	41-43
	4.4.2	Plate Incubate at Temperature 4 ⁰ C	43-44

CHAPTER 5: CONCLUSION AND RECOMMENDATION	45
5.1 Conclusion	45
5.2 Recommendation	46
REFERENCES	47-50
APPENDIX A	51-61
APPENDIX B	62
APPENDIX C	63

FYP FIAT

LIST OF TABLES

No.	Page
3.1 Ingredients for standard grass jelly agar production	14
3.2 Gelatine addition in grass jelly agar	15
3.3 Carrageenan addition in grass jelly agar	16
4.1 pH analysis data for grass jelly agar by week	21
4.2 Brix analysis data for grass jelly agar by week	23
4.3 Colour analysis data of Lightness, L* value for grass jelly agar by week	25
4.4 Colour analysis data of Redness, a* value for grass jelly agar by week	27
4.5 Colour analysis data of Yellowness, b* value for grass jelly agar by week	28
4.6 Texture profile analysis data of hardness for grass jelly agar by week	30-31
4.7 Texture profile analysis data of cohesiveness for grass jelly agar by week	32
4.8 Texture profile analysis data of gumminess for grass jelly agar by week	34
4.9 pH analysis data for grass jelly drink by week	36
4.10 Brix analysis data for grass jelly drink by week	38
4.11 Colour analysis data of absorbance value at 309 nm for grass jelly drink by	
week	40
4.12 Number of colony count for storage in 37 ⁰ C	41-42
4.13 Number of colony count for storage in 4 ⁰ C	43-44
A.1 Two Way ANOVA for pH and brix analysis of grass jelly agar	51
A.2 Post Hoc Tests (Tukey) for pH of grass jelly agar	52
A.3 Post Hoc Tests (Tukey) for brix of grass jelly agar	52
A.4 Two Way ANOVA for colour analysis of grass jelly agar	53
A.5 Post Hoc Tests (Tukey) for L* value of grass jelly agar	54

A.6 Post Hoc Tests (Tukey) for a* value of grass jelly agar	54
A.7 Post Hoc Tests (Tukey) for b* value of grass jelly agar	55
A.8 Two Way ANOVA for texture analysis of grass jelly agar	56
A.9 Post Hoc Tests (Tukey) for hardness value of grass jelly agar	57
A.10 Post Hoc Tests (Tukey) for cohesiveness value of grass jelly agar	57
A.11 Post Hoc Tests (Tukey) for gumminess value of grass jelly agar	58
A.12 Two Way ANOVA for pH, brix and colour analysis of grass jelly drink	59
A.13 Post Hoc Tests (Tukey) for pH value of grass jelly drink	60
A.14 Post Hoc Tests (Tukey) for brix value of grass jelly drink	60
A.15 Post Hoc Tests (Tukey) for colour value of grass jelly drink	61

UNIVERSITI MALAYSIA KELANTAN

LIST OF FIGURE

No.	Page
4.1 Graph of pH analysis data for grass jelly agar by week	22
4.2 Graph of brix analysis data for grass jelly agar by week	24
4.3 Graph of colour analysis data of Lightness, L* value for grass jelly agar by week	26
4.4 Graph of colour analysis data of Redness, a* value for grass jelly agar by week	27
4.5 Graph of colour analysis data of Yellowness, b* value for grass jelly agar by week	29
4.6 Graph of texture profile analysis data of hardness for grass jelly agar by week	31
4.7 Graph of texture profile analysis data of cohesiveness for grass jelly agar by week	33
4.8 Graph of texture profile analysis data of gumminess for grass jelly agar by week	35
4.9 Graph of pH analysis data for grass jelly drink by week	37
4.10 Graph of brix analysis data for grass jelly drink by week	39
4.11 Graph of colour analysis data of absorbance value at 309 nm for grass jelly drink by week	40
C.1 Control	63
C.2 Gelatine 1%	63
C.3 Gelatin 2%	63
C.4 Gelatin 3%	63
C.5 Gelatine 4%	63

FYP FIAT

LIST OF ABBREVIATIONS AND SYMBOLS

° C	Degree celcius			
±	Plus minus sign			
%	Percentage			
g	Gram			
kg	Kilogram			
ml	Milli letter			
nm	Nano meter			
SPF	Sweet Potato Flour			
CF	Corn Flour			
ANOVA	Analysis of Variance			
SD	Standard Deviation			
CFU	Colony Forming Unit			
L*	Lightness Colour			
a*	Redness Colour			
b*	Yellowness Colour			
SPSS	Statistical Package for the Social Science			
TPA	Texture Profile Analysis			

KELANTAN

THE EFFECT OF ADDITION TWO DIFFERENT THICKENING AGENT (GELATINE AND CARRAGEENAN) FOR SHELF LIFE AND PHYSICOCHEMICAL PROPERTIES IN GRASS JELLY

ABSTRACT

Grass jelly agar and drink had been popular because of their nutrition especially high in dietary fibre and carbohydrates. There are some problem that can reduces consumer preferences and perception. This research was conducted to study the physicochemical analysis and shelf life in grass jelly made with two different thickening agent which are gelatine and carrageenan. This research was to determine appropriate percentage of addition gelatine and carrageenan. This study also conducted to improve the texture of grass jelly by addition of gelatine and carrageenan. Physicochemical properties which are pH, brix, colour and texture was analyse by weekly until week 4. Furthermore, shelf life of grass jelly with addition gelatine and carrageenan also will be evaluated. Grass jelly agar will be prepared with different percentage which are addition of gelatine 1%, 2%, 3% and 4% while addition of carrageenan 6%, 7%, 8% and 9%. The samples will be kept at constant temperature which is 4 ^oC for 3 months. In order to test the shelf life, the parameters including pH, texture, colour and concentration of brix at week 1 will be determined, to select the best percentage of gelatine and carrageenan for microbiological analysis. The shelf life will be tested within 3 months on weekly basis and all parameters will be test weekly. Based on the result, shelf life of grass jelly addition with gelatine is much longer than carrageenan. Physicochemical analysis showed that grass jelly with addition of gelatine at the percentage 3% and addition carrageenan at 7% is the most preferable sample. In future study, another thickening agent can be used to replace with gelatine and carrageenan for another analysis.

Keywords: shelf life, grass jelly, gelatine, carrageenan, parameter

KESAN PENAMBAHAN DUA AGEN PENEBALAN (GELATINE DAN KARRAGEENAN) UNTUK JANGKA HAYAT DAN SIFAT FIZIKOKIMIA DALAM AGAR JELI

ABSTRAK

Agar jeli dan minuman jeli telah popular kerana nutrisi mereka terutama tinggi dalam serat makanan dan karbohidrat. Terdapat beberapa masalah yang boleh mengurangkan pilihan dan persepsi pengguna. Oleh itu, kajian ini dijalankan untuk mengkaji analisis fizikokimia dan jangka hayat cincau yang dibuat dengan dua agen penebalan yang berbeza iaitu gelatine dan karragenan. Kajian ini bertujuan untuk menentukan peratusan tambahan gelatin dan karagenan. Kajian ini juga dilakukan untuk meningkatkan tekstur cincau dengan penambahan gelatin dan karagenan. Selain itu, sifat fizikokimia iaitu pH, brix, warna dan tekstur dianalisis secara mingguan selama minggu ke-empat. Jangka hayat agar jeli dengan tambahan gelatine dan carrageenan juga akan dinilai. Agar jeli akan disediakan dengan peratusan yang berbeza iaitu penambahan gelatin 1%, 2%, 3% dan 4% manakala penambahan karragenan 6%, 7%, 8% dan 9%. Sampel akan disimpan pada suhu malar iaitu 4^oC selama 3 bulan. Untuk menguji jangka hayat, parameter termasuk pH, tekstur, warna dan kepekatan brix pada minggu 1 akan ditentukan, untuk memilih peratusan terbaik gelatine dan karragenan untuk analisis mikrobiologi. Jangka hayat dalam masa 3 bulan setiap minggu dan semua parameter akan diuji setiap minggu. Berdasarkan hasilnya, jangka hayat cincau dibuat dengan gelatine jauh lebih panjang daripada karragenan. Analisis fizikokimia menunjukkan bahawa cincau dengan penambahan gelatin pada peratusan 3% dan tambahan karragenan pada peratusan 7% adalah sampel yang paling disukai. Dalam kajian masa depan, satu lagi agen penebalan boleh digunakan untuk menggantikan dengan gelatine dan karrageenan untuk analisis yang lain.

Kata kunci: jangka hayat, agar jeli, gelatin, karrageenan, parameter

CHAPTER 1

INTRODUCTION

1.1 Research Background

Grass jelly (*Mesona chinensis*) or known as cincau in Indonesia is jelly-like dessert mostly popular served as sweet dessert in Hong Kong, Mainland China and Southeast Asia. According to Sasmita and Ling (2017), extraction of grass jelly in traditional way has been used as herbal drinks to promote health and vitality. Phenolic compounds extracted from grass jelly significantly contributed to the antioxidant activity and free radical scavenging effects (Yen & Hung, 2000).

Physical preferences including texture is the most important character of grass jelly and gelling agent that is gelatine and carrageenan make the texture more desirable and meet consumer demand. In addition, Yuris, Goh, Hardacre, and Matia-Merino (2017) reported grass jelly categorized among the less common polysaccharide fraction and show an interesting interaction with starch. The polysaccharides usually act to improve food functionality.

Extraction of grass jelly is black in colour and just has a low viscosity and when has been heated and cooled, its cannot form own gel (Yuris et al., 2017). The grass jelly in market usually has a longer shelf life and maintain in shining texture. Unfortunately,

the quality and cannot be stored in longer period of time. Thus, the objective in this research study is to determine the shelf life of grass jelly made with gelatine and compared it with commercial grass jelly drink.

1.2 Problem Statement

Physical properties are the main subject that needs to be maintained for grass jelly products. The production of the grass jelly must be hygienic and in a good quality as preferred by consumers. The influence to choose the food product is based on the quality and condition of the food and beverage products. Contamination from microorganisms, enzyme and pathogen can be the main distributor of food spoilage thus, affecting the shelf life of grass jelly. Nowadays, people are more concerned to consume healthier and organic product that had higher demand to avoid synthetic preservative. Grass jelly produced locally by a small and medium-sized enterprises (SMEs) using sweet potato flour and corn flour demonstrated shorter shelf life compared to commercial grass jelly. The addition of gelatine and carrageenan may improve the texture of the grass jelly but no information regarding the shelf life. Therefore, this study was conducted to analyse the physicochemical analysis of grass jelly made with gelatine and carrageenan stored up to three months.

MALAYSIA KELANTAN

1.3 Hypothesis

Shelf life of the grass jelly made with gelatine and carrageenan is different from the commercial grass jelly drink. It is hypothesized that: -

H₀: Grass jelly made with gelatin and carrageenan have longer shelf life compared to commercial grass jelly drink

H₁: Grass jelly made with gelatin and carrageenan have shorter shelf life compared to commercial grass jelly drink.

1.4 Objectives

The objectives of this study are:

- 1) To determine the appropriate concentration of thickening agent, gelatine and carrageenan in making of grass jelly
- 2) To analyse physicochemical properties of grass jelly from two different thickening agent which are gelatine and carrageenan
- To evaluate the effect of shelf life in grass jelly with gelatine and carrageenan during storage at 4 ^oC

1.5 Scope of Study

The scope of this study is to develop a better quality grass jelly. This study also conducted to look for the shelf life of grass jelly made with gelatine and carrageenan as the thickening agent compared to commercial grass jelly drink. In this study, the parameter that had been analysed is the percentages of thickening agent, gelatine 0%, 1%, 2%, 3%, 4% and for carrageenan 6%, 7%, 8% and 9% respectively. The timeline for testing the shelf life was three months. The constant parameters are storage temperature and sugar syrup concentration. The shelf life was testing by using spread plate technique.

1.6 Significance of Study

This research was conducted to determine the shelf life of grass jelly made with gelatine and carrageenan. Throughout this study, the shelf life of grass jelly samples had been compared to a locally produced grass jelly, and commercial grass jelly drink available in the market. This research was identify whether the addition of gelatine and carrageenan may increase the grass jelly shelf life over time without the addition of preservatives compared to the locally produced grass jelly.

KELANTAN

CHAPTER 2

LITERATURE REVIEW

2.1 Grass Jelly and Its Application

Grass jelly is also known as cincau which is mean by green grass in Chinese. There are various plants used to make grass jelly including green grass jelly (*Cyclea barbata*), black cincau (*Mesona palustris*) and cincau perdu (*Melastoma polyanthum*). Alternative name of grass jelly is leaf jelly. According to Laurent (2013), grass jelly had it other names such as *chao kual* in Thailand and *xian cao* in Chinese. In manufacturing sector, black grass jelly is manufactured in the form of instant powder like other jellies and agar. The powder form is easier to use.

There are many types of grass jelly form in the market such as grass jelly powder, grass jelly drink and grass jelly desserts. Different place have different way to serve the grass jelly. In Asian country, grass jelly is available as a beverage or mixed with a juice. Differ from China, grass jelly commonly served with evaporated milk or sugar syrup. People love to put the grass jelly in beverages like soy drink or "bandung" drink as accessories to the drink. It is a healthy drink because of the benefits content inside the grass jelly. As it is known in recent years, black grass jelly become more popular within public because of its benefit and uses.

2.1.1 Morphology of Grass Jelly

Mesona chinesis is a type of plants used to make black grass jelly. It belongs to the genus *Platostoma* of the mint family. *Mesona chinesis* also known as *Plastoma palustre*. This species is cultivated on flat ground or areas with slight slope. *Mesona chinesis* grows extensively in East Asia such as south east China and Taiwan. The grown of this species are prefers ravines, grassy, dry and sandy area for growth. The plants are from 15-100 cm high with hairy stems and leaves. The leaves are tear-drop shaped and serrated. The *Mesona chinesis* plant is processed by harvesting all the aerial portions above the root. The suitable place to planting the grass jelly is at loose soil with acidity of 5.5 to 6.5.

2.1.2 Benefits of Grass Jelly

In Kreungngern and Chaikham (2016) study, it was illustrated that *Mesona chinesis* is a herbal plant with many health benefits including lowering blood pressure and diuretic effects. Yen and Huang (2001), reported extraction of phenolic compounds from grass jelly significantly contributed to free radical scavenging effects and antioxidant activity.

There is high soluble fiber content in the grass jelly and it also has been used as a folk medicine (Dewanti Widyaningsih, Wijayanti, Handayani, & Prasetyo, 2016). Grass jelly also effective against diabetes, hypertension and heat-shock. Grass jelly leaf gum is a potent polar antioxidant which interacts with wide range of species that are directly responsible for oxidative damage (Lai, Chou, & Chao, 2001).

2.1.3 Nutritional Value of Grass Jelly

Grass jelly beneficial due to the nutrient content inside the agar. Grass jelly is higher in dietary sugar and carbohydrates. The grass jelly is relatively low calorie count which is beneficial for diet. Nutritional facts of grass jelly drink consists of carbohydrate, protein, calories and calcium. Grass jelly is one of the best meal for diet behaviour to get ideal weight and posture.

2.2 Thickening Agent Added In Grass Jelly

Thickening agent is a substance that can increase viscosity of a liquid without changing its properties. It can improve the suspensions or emulsions of other ingredients which can increase the stability. Gelling agent commonly regulated as food additives that are used to thicken various foods. Gelatine, corn flour and sweet potato flour are the gelling agents had been used in production of grass jelly.

2.2.1 Gelatine

Gelatine is derived by hydrolytic degradation of collagen, the principal protein component of white fibrous connective tissue likes tendon, bone and skin (Ross-Murphy & Simon, 1992). Normally, gelatine is dissolved in warm water at temperature of 40 0 C. If the temperature is above 40 0 C, the polypeptide will form in flexible single form.

Term 'gel' is derived from the word of gelatine. In the past, the structure and mechanical behaviour of gel from the polypeptide gelatine was widely studied. There is three modern technique in structural and molecular properties, which are categorized as molecular, macromolecular and supra-molecular. In this study, gelatine will be substituted in grass jelly agar as thickening agent. The percentages of gelatine used are 1%, 2%, 3% and 4%.

2.2.2 Carrageenan

Reported by Van De Velde, Lourenço, Pinheiro, and Bakker (2002), carrageenan is a food-grade and biocompatible support material extracted from red seaweeds. Carrageenan acts as an immobilization support and major in stability improvement. Uses of carrageenan in food application is started in a long time ago almost 600 years. Carrageenan had been applied in various applications especially food industry for sauces, jellies and yogurt. Other than that, carrageenan also had been applied in cosmetic and pharmaceutical industry.

In Europe, carrageenan is in list of permitted gelling agent. The number and position of sulphate group in carrageenan is differ in several types. As carrageenan had feature of gel formation, then, it is suitable to be used in immobilisation techniques. Carrageenan consists of mechanical stability acts as the gel hardening. In this research, carrageenan is also the substitution in grass jelly agar as thickening agent. The percentage of carrageenan used is 6%, 7%, 8% and 9%.

2.2.3 Corn Flour

Flour is fine powder made from cereals or other starch based produce. It is most commonly made from wheat. The addition of corn flour as thickening agent will affect physical properties such as thickness and rheological characterization, chemical which is elasticity and ruptured and also formaldehyde emission. Uses of corn flour can improve physical and mechanical properties. Corn flour is abundant, renewable, inexpensive and readily available (Moubarik et al., 2013). In this study, corn flour will be used as one of the thickening agent in constant weight which is 2.5 gram, 0.87%.

2.2.4 Sweet Potato Flour

Sweet potato flour is low viscosity and very useful in the development of caloricrich specialty food (Ramesh Yadav, Guha, Tharanathan, & Ramteke, 2006). Sweet potato flour contains of maltose which is used in wide range of food and pharmaceutical industry. The maltose behaviour is known as good thermal stability, mild sweetness, lack of colour formation and low viscosity in solution (Noda, Furuta, & Suda, 2001). In this study, sweet potato flour will be used as one of the thickening agent in constant weight which is 10 gram, 3.48%.

2.3 Shelf Life of Grass Jelly Using Spread Plate Method

Shelf life study will summarize the storage results by examining the microbial growth. Shelf life must meet the food hygiene regulations. This will ensure safety among consumer and contribute to maintain brand's reputation. Shelf life will assess the quality of the product. Shelf life was implied in food, cosmetic and pharmaceutical industry.

In this study, shelf life of grass jelly agar made with gelatine and carrageenan will be determined. Shelf life will be conducted using spread plate method. This is technique to plate a liquid sample. A successfully spread plate will have a countable number of isolated colonies evenly distributed on the plate (Choi & Rogers, 2015). Countable range of colony is 20 to 250 colonies.

2.4 Analysis of Grass Jelly Made with Gelatine and Carrageenan

2.4.1 pH Value

According to Sigel, Zuberbuhler, and Yamauchi (1991), pH measurement is not just a simple method which is only need us to switch on the pH, dip into solution and taking the meter reading. Analysis of pH reading must be clarified to achieve the objective of analyse pH value. pH is to measure of the hydrogen ion concentration of the water. The lower pH meter of water, the more acidic it is. The higher pH meter of water, the more neutral or alkaline it is.

2.4.2 Texture

Texture analysis is comprehension test to determine textural properties of foods. It commercially used in pharmaceutical, personal care food and gel industry. There are attributes will be analysed by the texture analyser such as hardness and cohesiveness. Food companies usually applied texture analysis technique in new product development and as a part of quality control in finished process food.

2.4.3 Colour

Interaction between visible light and materials both extrinsically and intrinsically will form colour. The colour analysis will detect the lightness, redness and brightness. Colour is one of quality attribute in food and bioprocess industry. It will influence consumer attractiveness, choice and preferences. Colour measurement in food had been considered as indirect measurement in term of quality attributes.

2.4.4 Percentage of Brix

Brix is amount of light bends passes through a liquid. It is a measurement for concentration of sugar content. Percentage of brix is the sugar content in the aqueous solution. Traditionally, brix is usually used in wine, fruit juice, honey industries and carbonated beverage. Amount of one gram of sucrose is equal to one degree of brix. Measurement percentage of brix can be measured by using refractometer. The refractometer has advantages over other methods of estimating IgG concentration in that the Brix refractometer is inexpensive, readily available, less fragile, and less sensitive to variation in temperature, season of the year and other factors (Quigley, Lago, Chapman, Erickson, & Polo, 2013).

CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

3.1.1 Raw Materials

The grass jelly leaves was bought from traditional Chinese shop in Kota Bharu Then, other basic ingredients of the grass jelly include corn flour, sweet potato flour, gelatine, carrageenan, sodium carbonate and sugar was purchased from local market. Nutrient agar was prepared by suspended 28 g in 1 litre of distilled water. Peptone water was prepared by suspended 15 g in 1 litre of distilled water. Then both nutrient agar and peptone water was dissolved completely before sterile by autoclaving at 121 ^oC for 15 minutes.

3.1.2 Apparatus

Apparatus that will be used in this experiment are large pot, large bowl, beakers, strainer, knife, chopping board, spoon, thermometer, disposable petri dish, measuring cylinder, spatula, muslin cloth, distilled water, water, small container with caps, 250 ml, hockey stick and Bunsen burner.

3.1.3 Equipment

Equipment that will be involved in this study are Brookfield CT3 Texture analyser, stove, laboratory weighing balance, pH meter, Chroma meter, autoclave, incubator, chiller, refractometer and pipette.

3.2 Methods

3.2.1 Extraction of Grass Jelly Leaves

A 50 gram of the dried grass jelly leaves was weighed using laboratory weighing balance and washed using distilled water to clean from dirt and any impurities. Then, the grass jelly leaves was placed into a pot and added with 2.25 litter of water and 10 ml sodium carbonate. The solution was soaked around 15 minutes and boiled for one hour. The solution of grass jelly agar was stirred using a spatula to prevent evaporation. After boiling, the solution was filtered using muslin cloth. The extraction was kept for production of grass jelly agar.

3.2.2 Production of Grass Jelly Agar

Grass jelly extract, sweet potato flour, corn flour, carrageenan and gelatine was mixed together and added with 25 gram of water to dissolve. The mixture was heated until boiling and continuously stirred using spatula to ensure it completely dissolved. The mixture was transferred out and allowed to cool down. Then, the mixture was kept in the fridge for future used. The formulation of grass jelly agar is according to Table 3.1

Ingredients	Weight (gram)	Percentage (%)		
Grass jelly extract	250	86.95		
Sweet potato flour	10	3.48		
Corn flour	2.5	0.87		
Gelatine/Carrageenan	0	0		
Water	25	8.70		
Total	287.5	100		

Table 3.1: Ingredients for standard grass jelly agar production

3.2.2.1 Addition of Gelatine

Gelatine as one of the thickening agent was substituted at 0% (control), 1%, 2%, 3% and 4% (Table 3.2). The weight of water, sweet potato flour and corn flour is 25 g, 10 g and 2.5 g respectively. It will be the constant variable. Amount of grass jelly extract was changed according to the changes percentage of gelatine put into it. Five concentrations of gelatine will be used.

Ingredients	Amount addition of gelatine (g)					
	0%	1%	2%	3%	4%	
Grass jelly extract	250	247.5	24 <mark>5</mark>	242.5	240	
Sweet potato flour	10	10	10	10	10	
Corn flour	2.5	2.5	2.5	2.5	2.5	
Gelatine	0	2.5	5	7.5	10	
Water	25	25	25	25	25	
Total (g)	287.5	287.5	287.5	287.5	287.5	

Table 3.2: Gelatine addition in grass jelly agar

3.2.2.2 Addition of Carrageenan

Carrageenan as one of the thickening agent was substituted at 0% (control), 6%, 7%, 8% and 9% (Table 3.3). The weight of water, sweet potato flour and corn flour is 25 g, 10 g and 2.5 g respectively. It will be the constant variable. Amount of grass jelly extract was changed according to the changes percentage of carrageenan put into it. Five concentrations of carrageenan will be used.

Ingredients	Amount addition of carrageenan (g)					
	0%	6%	7%	8%	9%	
Grass jelly extract	250	235	232 <mark>.5</mark>	<mark>2</mark> 30	227.5	
Sweet potato flour	10	10	10	10	10	
Corn flour	2.5	2.5	2.5	2.5	2.5	
Carrageenan	0	15	17.5	20	22.5	
Water	25	25	25	25	25	
Total (g)	287.5	287.5	287.5	287.5	287.5	

Table 3.3: Carrageenan addition in grass jelly agar

3.3 Production of Grass Jelly Drink

In production of grass jelly drink, the grass jelly agar was carefully cut into small cube by sized 2 cm X 2 cm. The cube was weighted by using laboratory weighing balance around 20 g. The grass jelly had been cut was placed into sterile 250 ml bottle. Then, the prepared sugar syrup at 13 brix was added into the bottle.

3.4 Determining Shelf Life of Grass Jelly Agar

The colony forming units (CFU) were determined by spread plate methodologies. Serial dilution was prepared to get appropriate dilution. The dilution chosen was from factor 10⁻¹ until 10⁻⁴. First, the grass jelly sample will be homogenised in peptone water by shake 90 times for each sample. The sample of grass jelly that had been diluted was spread with the hockey stick on the nutrient agar plate. After that, the plates were incubated. Plate with CFUs between 25 and 250 were utilized to calculate the CFU/ gram. The sample was left for three months in the fridge at constant temperature which is $4 \, {}^{0}$ C for this test. The sample was checked frequently by weekly. All measurement were done in triplicate.

3.5 Determining Colour of Grass Jelly Agar

Colour of grass jelly agar was measured using Chroma meter. The data was shown on the Chroma meter screen. Data of colour differences using CIE L*a*b* coordinates. In this L*a*b* coordinates, L* indicates lightness, a* indicates redness and b* indicates yellowness. All measurement were done in triplicate.

3.6 Determining Texture of Grass Jelly Agar

Texture profile analysis (TPA) of grass jelly was conducted using a TA-XT plus Texture analyser (Stable Micro System, London, England). TPA was performed using 10 kg load cell and a 75 mm diameter compression platen (SMS P/75) which is forced to compress 75% of the sample height in two cycles of compression tests. The test conditions were; pre-test speed 2.0 mm/s, test speed 10.0 mm/s and post-test speed 10.0 mm/s; penetration distance 5 mm and a rest period of 5s between two cycles; trigger load 5 g. Three replicates for each samples was performed. Hardness, cohesiveness, and gumminess were calculated by the software instrument called Texture Exponent (Stable Micro System, London, England).

3.7 Determining pH Value of Grass Jelly Agar and Drink

Reading of pH value was measured by using a digital pH meter. The reading of pH meter were taken in triplicate of each sample.

3.8 Determining Brix Concentration of Grass Jelly Agar and Drink

Brix concentration was determined with a refractometer. The brix of grass jelly drink was measured in triplicate of each sample.

3.9 Determining colour of Grass Jelly Drink

By using UV spectrophotometer, the colour of the grass jelly drink in black colour that was leached out to the liquid after caped the bottle and storage was determined. The wavelength of UV Spectrophotometer was set at 309 nm. The pipetted solution of grass jelly drink in the cuvette was placed in UV Spectrophotometer and the reading of absorbance was recorded.

3.10 Statistical Analysis

Two way Analysis of Variance (ANOVA) using SPSS software will be using to evaluate all the data. Standard deviation and mean (means \pm SD) will be determined with using of ANOVA calculation. Determination of significant differences among treatment means were done by Tukey's multiple range tests (P \leq 0.05).

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Screening Percentage of Gelatine and Carrageenan

From previous study, texture of grass jelly agar was not smooth like commercial grass jelly. So, this study was made to improve the physicochemical properties include test for the shelf life. Based on analysis, formulation of addition gelatine and carrageenan had been made. The percentage was 5%, 10%, 15% and 20%. But, the formulation was not matched correctly because of the observation made before run experiment. Below showed the negative observation of the first formulation before it changed to new percentage which are for gelatine (1%, 2%, 3%, 4%) while for carrageenan (6%, 7%, 8%, 9%).

UNIVERSIII MALAYSIA KELANTAN

Samples	Observation						
Gelatine 5%	Grass jelly agar made with gelatine 5 – 20% was not significant						
Gelatine 10%	- because the texture was hard. Grass jelly agar with gelatine 20% was						
	the most hard among others percentage. So, the percentage of						
Gelatine 15%	gelatine had been decreased to 1 until 4 percent. It is just nice for						
	addition of gelatine.						
Gelatine 20%							
Carrageenan 5%	Grass jelly agar made with carrageenan $5 - 20\%$ also not significant						
	because of its texture and appearance. Grass jelly agar made with						
Carrageenan 10%	addition carrageenan 5% was so soft and not in texture of grass jelly.						
Carrageenan 15%	But, grass jelly agar made with carrageenan $10 - 20\%$ was harder.						
	So, the percentage of carrageenan was change to 6 – 9% because it						
Carrageenan 20%	is in between 5% and 10%.						

UNIVERSITI MALAYSIA KELANTAN

4.2 Physicochemical Analysis for Grass Jelly Agar

Physicochemical analysis for grass jelly agar was pH analysis, brix analysis, colour analysis indicates lightness, L*, redness a* and brightness b* and texture analysis including 5 attribute which are hardness, cohesiveness and gumminess.

4.2.1 pH Analysis for Grass Jelly Agar

	pH analysis					
Sample –	Week 1	Week 2	Week 3	Week 4		
Control	8.757 ±	8.743 ±	8.717 ±	$8.653 \pm$		
	0.005774	0.025166	0.015275	0.023094		
Gelatine 1%	8.927 ±	$8.867 \pm$	8.663 ±	$8.260 \pm$		
	0.005774	0.015275	0.005774	0.017321		
Gelatine 2 <mark>%</mark>	<mark>8.8</mark> 60 ±	$8.670 \pm$	8.427 ±	$8.257 \pm$		
	0.020000	0.017321	0.011547	0.005774		
Gelatine 3%	<mark>8.6</mark> 37 ±	$8.437 \pm$	8.397 ±	$8.223 \pm$		
	0.015275	0.035119	0.005774	0.015275		
Gelatine 4%	8.217 ±	8.127 ±	$8.070 \pm$	$8.027 \pm$		
	0.005774	0.011547	0.010000	0.005774		
Carrageenan	$8.940 \pm$	$8.920 \pm$	$8.867 \pm$	$8.833 \pm$		
6%	0.010000	0.010000	0.025166	0.037859		
Carrageenan 7%	9.333 ±	9.287 ±	$9.250 \pm$	$9.193 \pm$		
	0.011547	0.011547	0.010000	0.011547		
Carrageenan	$9.007 \pm$	8.963 ±	8.933 ±	$8.890 \pm$		
8%	0.005774	0.020817	0.005774	0.010000		
Carrageenan	9.087 ±	9.020 ±	8.933 ±	$8.897 \pm$		
9% Maans in the diffe	0.005774	0.010000	0.005774	0.015275		

Table 4.1: pH analysis data for grass jelly agar by week

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

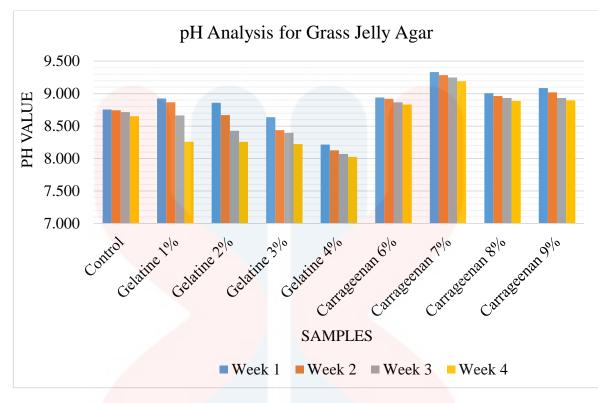


Figure 4.1: Graph of pH analysis data for grass jelly agar by week

Figure 4.1 shows the pH analysis data for grass jelly agar by week. Through figure 4.1, the pH value for all samples is decreasing by week. Carrageenan 7% have the higher pH value compared to others with average pH value 9.333, 9.287, 9.250 and 9.193 from week 1, 2, 3 and 4 respectively. The decreasing pH value for each sample is just slightly difference. The lowest pH value is gelatine 4% which are 8.217, 8.127, 8.070 and 8.027 from week 1, 2, 3 and 4 respectively.

Based on figure 4.1, the pH analysis for grass jelly agar with addition gelatine show decreasing from week 1 to week 4 for each percentage. The pH was in range 8.9 to 8.0. So, it is in alkaline behaviour and still safe to be eaten.

Based on figure 4.1, the pH analysis for grass jelly agar with addition carrageenan show decreasing from week 1 to week 4 for each percentage. The pH was in range 9.3 to 8.8. So, it is in alkaline behaviour and still safe to be eaten.

4.2.1.1 Effect of Different Concentration of Thickening Agent on pH Value of Grass

Jelly Agar

a) Gelatine

Gelatine with percentage 1 until 4 show decreasing pH value. When percentage addition of gelatine increases, the pH value will be decreases.

b) Carrageenan

Carrageenan with percentage 6 until 9 show increasing pH value. When percentage addition of carrageenan increases, the pH value will be increases.

4.2.2 Brix Analysis for Grass Jelly Agar

Sampla		Brix a	nalysis	
Sample	Week 1	Week 2	Week 3	Week 4
Control	2.833 ±	$2.467 \pm$	2.533 ±	2.100 ±
Control	0.057735	0.152753	0.115470	0.100000
Gelatine 1%	5.167 ±	4.733 ±	4.467 ±	$3.400 \pm$
Gelatine 1%	0.152753	0.057735	0.115470	0.200000
Calatina 20/	7.133 ±	6.733 ±	$6.233 \pm$	$5.767 \pm$
Gelatine 2%	0.115470	0.115470	0.057735	0.057735
Calatina 20/	$8.300 \pm$	7.733 ±	7.333 ±	$6.233 \pm$
Gelatine 3%	0.100000	0.115470	0.115470	0.152753
Calatina 40/	$7.867 \pm$	$7.633 \pm$	$7.133 \pm$	$6.633 \pm$
Gelatine 4%	0.115470	0.057735	0.115470	0.057735
Carrageenan	$7.767 \pm$	7.333 ±	$6.533 \pm$	$6.500 \pm$
6%	0.057735	0.115470	0.115470	0.100000
Carrageenan	$10.667 \pm$	$10.167 \pm$	$9.467 \pm$	$8.400 \pm$
7%	0.057735	0.057735	0.115470	0.100000
Carrageenan	$8.267 \pm$	$7.767 \pm$	$7.167 \pm$	$6.267 \pm$
8%	0.057735	0.057735	0.057735	0.115470
Carrageenan	$8.767 \pm$	8.333 ±	$7.533 \pm$	$6.667 \pm$
9%	0.057735	0.115470	0.057735	0.115470

Table 4.2: Brix analysis data for grass jelly agar by week

Means in the different column followed the different letters are significantly different (P ≤ 0.05). Each data point is the average of three replications (n=3).

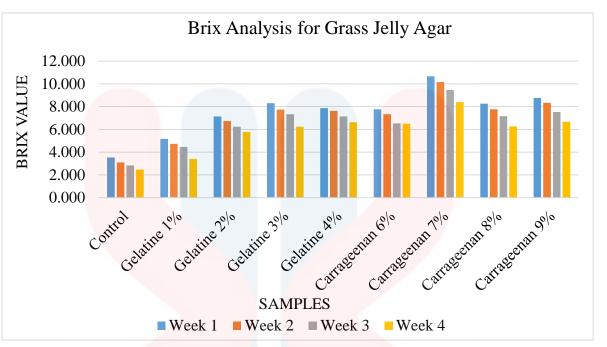


Figure 4.2: Graph of brix analysis data for grass jelly agar by week

According to the result in figure 4.2, the brix value was decreased by week for each samples. The brix value for sample carrageenan 7% resulted the highest value compared to other samples. The average brix value are 10.667, 10.167, 9.467 and 8.400. Control sample was the lowest brix reading which are 2.833, 2.467, 2.533 and 2.100. The decreased value of brix proved that the sugar syrup content in grass jelly agar was decreasing by week.

4.2.2.1 Effect of Different Concentration of Thickening Agent on Brix Value of Grass Jelly Agar

a) Gelatine

Gelatine with percentage 1 until 4 show increasing brix value. When percentage addition of gelatine increases, the brix value will be increases.

b) Carrageenan

Carrageenan with percentage 6 until 7 show increasing brix value, but from percent 7 until 9, the brix value start to decline. This show that the graph trend was unstable. This condition can happen because of the

changes environment temperature and evaporation of oxygen.

4.2.3 Colour Analysis for Grass Jelly Agar

a) Lightness

		Colour Lightness	Colour Lightness value analysis		
Sample	Week 1	Week 2	Week 3	Week 4	
Control	20.480 ±	19.433 ±	$23.673 \pm$	$17.693 \pm$	
Control	0.317962	0.192180	0.185023	0.204042	
Gelatine 1%	$21.463 \pm$	19.230 ±	22.193 ±	$23.113 ~\pm$	
Gelatille 1%	0.159478	0.269629	0.11 <mark>3</mark> 725	0.205020	
Gelatine 2 <mark>%</mark>	23.200 ±	$20.090 \pm$	25.650 ±	$20.640 \pm$	
Gelatille 2%	<mark>0</mark> .573760	0.298664	0.2351 <mark>6</mark> 0	0.206640	
Gelatine 3%	20.530 ±	17.390 ±	17.687 ±	$18.817 \ \pm$	
Gelatine 5%	<mark>0</mark> .070000	0.240208	0.3271 <mark>5</mark> 9	0.085049	
Gelatine 4%	22.970 ±	$18.700 \pm$	20.917 ±	$22.490 \ \pm$	
Gelatine 4%	<mark>0.764918</mark>	0.450333	0.070238	0.30315	
Carrageenan	25.147 ±	20.840 \pm	24.520 ±	$23.307 \ \pm$	
6%	0.568624	0.276225	0.170880	0.201329	
Carrageenan	$22.093 \pm$	$17.483 ~\pm$	$21.403 ~\pm$	$24.710\ \pm$	
7%	0.397031	0.250067	0.223010	0.091652	
Carrageenan	$27.980 \pm$	$25.620 \ \pm$	$29.093 ~\pm$	$26.510\ \pm$	
8%	0.692820	0.137477	0.015275	0.277849	
Carrageenan	$29.817 \pm$	$24.447 \pm$	$28.473~\pm$	$28.467 \ \pm$	
9%	0.444110	0.100167	0.055076	0.228108	

Table 4.3: Colour analysis data of Lightness, L* value for grass jelly agar by week

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

KELANTAN

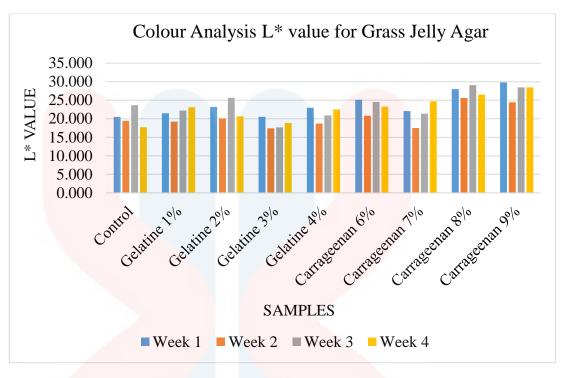


Figure 4.3: Graph of colour analysis data of Lightness, L* value for grass jelly agar by week

Figure 4.3 showed that colour analysis of lightness, L* value for grass jelly agar by week. The average of L* value highest at week 1 that indicated for carrageenan 9% and the lowest L* value was at week 2 that indicated for gelatine 3%. From the result, its show that gelatine 3% has the lowest L* value compared to other samples. There is differences of L* value among all samples.

b) Redness

Comple		Colour Redr	ess value analysis	
Sample	Week 1	Week 2	Week 3	Week 4
Control	3.767 ±	$2.497 \pm$	4.267 ±	$3.593 \pm$
Control	<mark>0.4</mark> 48813	0.030551	0.040415	0.144684
Gelatine 1%	<mark>9.2</mark> 93 ±	$3.217 \pm$	5.593 ±	5.597 \pm
Gelatille 1%	1.128288	0.037859	0.065064	0.289885
Gelatine 2%	$6.147 \pm$	$3.580 \pm$	5.730 ±	$4.587 \ \pm$
Gelatille 2%	0.230290	0.052915	0.130000	0.035119
Gelatine 3%	$3.630 \pm$	$2.020 \pm$	3.867 ±	$3.613 \pm$
Gelatille 5%	0.130767	0.085440	0.158850	0.092916
Gelatine 4%	5.400 ±	3.817 ±	$5.870 \pm$	$5.137 \pm$
Oelatille 4%	0.141774	0.066583	0.108167	0.066583
Carrageenan	$7.630 \pm$	$4.850 \pm$	6.680 ±	6.087 \pm
6%	0.549454	0.051962	0.351568	0.060277
Carrageenan	$6.570 \pm$	3.490 ±	6.067 ±	6.057 \pm
7%	0.570351	0.238118	0.070946	0.181475
Carrageenan	<u>10.0</u> 43 ±	6.190 ±	8.797 ±	$8.330\ \pm$
8%	0.160728	0.070000	0.256970	0.124900
Carrageen <mark>an</mark>	<mark>8.</mark> 763 ±	8.057 \pm	8.647 ±	9.157 \pm
9%	<mark>0.3</mark> 81095	0.040415	0.447363	0.090185

Table 4.4: Colour analysis data of Redness, a* value for grass jelly agar by week

Means in the different column followed the different letters are significantly different ($P \le 0.05$). Each data point is the average of three replications (n=3).

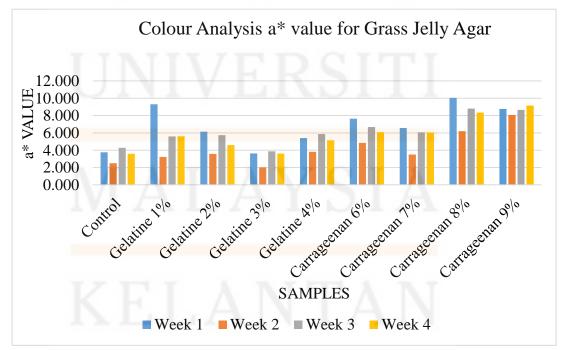


Figure 4.4: Graph of colour analysis data of Redness, a* value for grass jelly agar by week

Figure 4.4 show that colour analysis of redness, a* value for grass jelly agar by week. The highest average of a* value was at week 1 that indicated for carrageenan 8% and the lowest a* value was at week 2 that indicated for gelatine 3%. Each sample show differences a* value by week.

c) Yellowness

Sampla		Colour Yellowne	ess value analysis	
Sample -	Week 1	Week 2	Week 3	Week 4
Control	9.197 ±	5.340 ±	$10.870 \pm$	10.940 ±
Control	0.342685	0.045826	0.103923	0.281603
Gelatine 1%	$18.247 \pm$	5.393 ±	12.313 ±	$14.153 \pm$
Gelatine 1%	1.489340	0.047258	0.080829	0.330807
Gelatine 2%	14.377 ±	$6.683 \pm$	14.657 ±	$13.330 \ \pm$
Gelatine 2%	<mark>0.</mark> 738738	0.096090	0.391067	0.202978
Gelatine 3%	<mark>9</mark> .570 ±	$4.883 \ \pm$	11.857 ±	$11.733 \pm$
Gelatille 5%	<mark>0.</mark> 281603	0.130128	0.075056	0.115902
Gelatine 4%	12.997 ±	7.007 \pm	15.737 ±	$14.817 \ \pm$
Gelatille 4%	0.170978	0.066583	0.060277	0.240069
Carrageenan	17.763 ±	$7.967 \pm$	$14.543 \pm$	$13.837 \ \pm$
6%	1.422053	0.020817	0.240069	0.198578
Carrageenan	$14.377 \pm$	$6.383 \pm$	$14.400 \pm$	$12.487 \ \pm$
7%	0.883761	0.487579	0.121655	0.597188
Carrageenan	$20.223 \pm$	$9.417 \pm$	18.447 \pm	$16.623 \pm$
8%	0.115036	0.104083	0.321299	0.197569
Carrageenan	$19.453 \pm$	$17.583 ~\pm$	$18.620 \pm$	$19.610\ \pm$
9%	0.477214	0.035119	0.948736	0.310000

Table 4.5: Colour analysis data of Yellowness, b* value for grass jelly agar by week

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

28

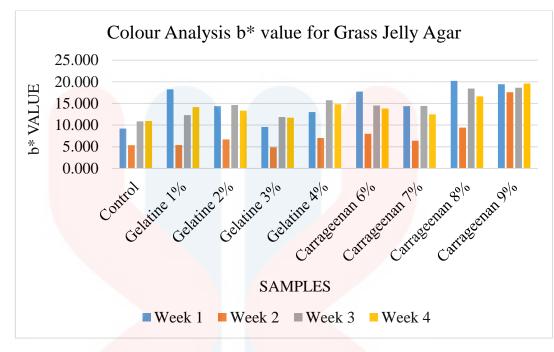


Figure 4.5: Graph of colour analysis data of Yellowness, b* value for grass jelly agar by week

Figure 4.5 show that colour analysis of yellowness, b* value for grass jelly agar by week. The highest average of b* value was at week 1 that indicated for carrageenan 8% and the lowest b* value was at week 2 that indicated for gelatine 3%. Each sample show differences b* value by week.

4.2.4 Texture Profile Analysis for Grass Jelly Agar

Texture is the most important characteristic of grass jelly agar and the addition of several gelling agents including potato flour, agar, carrageenan and other hydrocolloids has been displayed to provide desirable texture, relating to the consumer acceptance (Kreungngern & Chaikham, 2016).

a) Hardness

Hardness is defined as the force necessary to attain a given deformation (Kreungngern & Chaikham, 2016). Table 4.6 show the texture analysis data of hardness for grass jelly agar by week.

Sampla		Texture analy	ysis <mark>(Hardness)</mark>	
Sample	Week 1	Week 2	Week 3	Week 4
Control	$5356.000 \pm$	$5174.333 \pm$	$6198.000 \pm$	$5925.000 \pm$
Control	2.000000	1.527525	1.000000	2.000000
Gelatine 1%	$5388.000 \pm$	$5383.667 \pm$	5267.333 ±	$5225.667 \pm$
Geratine 170	1.000000	1.527525	1.527525	2.516611
Gelatine 2%	$5051.333 \pm$	$5203.000 \pm$	$5116.000 \pm$	$5026.000 \pm$
	0.577350	1.000000	2.000000	2.645751
Gelatine 3%	$5012.667 \pm$	$5102.333 \pm$	5163.333 ±	$5087.333 \pm$
Geratine 570	1.154701	1.527525	1.527525	2.081666
Gelatine 4%	$5076.667 \pm$	$5134.667 \pm$	$5147.000 \pm$	$5164.667 \pm$
Geratine 470	2.081666	1.154701	1.732051	3.055050
Carrageenan	5223.000 ±	5236.667 ±	5176.667 ±	$5337.000 \pm$
6%	1.000000	1.527525	2.081666	2.000000
Carrageenan	$5121.000 \pm$	5175.333 ±	$5142.667 \pm$	$5133.000 \pm$
7%	1.000000	3.511885	1.527525	3.605551
Carrageenan	$5183.333 \pm$	$5275.667 \pm$	$5244.333 \pm$	$5263.000 \pm$
8%	1.527525	2.081666	2.516611	2.645751

Table 4.6: Texture profile analysis data of hardness for grass jelly agar by week

Carrageenan	5184.333 ±	$5212.000 \pm$	$5113.667 \pm$	$5135.000 \pm$	
9%	1.154701	3.000000	3.785939	1.000000	
F 1 11 11 CC	1 0 11	1.1 1.00 .1	• • • • • •	1 1'00	

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

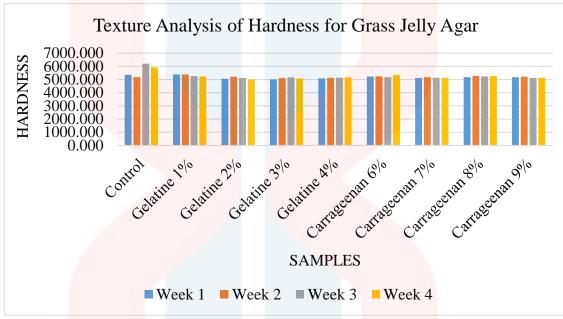


Figure 4.6: Graph of texture profile analysis data of hardness for grass jelly agar by week

From table 4.6, the hardness for each samples was just show slightly difference. The grass jelly agar with gelatine 1% show higher hardness value compared to other gelatine percentage. The grass jelly agar with carrageenan 7% show the higher hardness value compared to other carrageenan percentage. Sample control for week 3 show the highest hardness value.

b) Cohesiveness

Cohesiveness represents the strength of the internal bonds making up the body of the product. The lower the cohesiveness of a material, the more brittle it will be (Kreungngern & Chaikham, 2016). Table 4.7 show the texture analysis data of cohesiveness for grass jelly agar by week.

Comula		Texture analys	sis (Cohesiveness)	
Sample	Week 1	Week 2	Week 3	Week 4
Control	1.373 ±	1.550 ±	$1.140 \pm$	$2.070 \pm$
Control	0.050332	0.010000	0.020000	0.020000
Gelatine 1%	1.160 ±	0.767 ±	$0.467 \pm$	$1.130 \pm$
Gelatille 1%	0.010000	0.057735	0.152753	0.020000
Gelatine 2%	0.767 ±	0.847 ±	0.763 ±	$0.967 \pm$
Gelatille 2%	0.152753	0.025166	0.025166	0.015275
Gelatin <mark>e 3%</mark>	0.767 ±	$0.763 \pm$	0.767 ±	$0.740 \pm$
Gelatille 5%	0.011547	0.020817	0.015275	0.010000
Gelatin <mark>e 4%</mark>	$1.057 \pm$	$0.947 \pm$	$1.030 \pm$	$1.457 \pm$
Oelatille 4%	0.015275	0.020817	0.020000	0.035119
Carrageenan 6%	$0.980 \pm$	$0.937 \pm$	$0.837 \pm$	$0.933 \pm$
Callageenan 0%	0.010000	0.015275	0.020817	0.015275
Carrageenan 7%	$1.050 \pm$	$1.227 \pm$	1.260 ±	$0.963 \pm$
Callageenan 770	0.030000	0.015275	0.026458	0.005774
Carrageenan 8%	$0.957 \pm$	$1.063 \pm$	$1.023 \pm$	$0.947 \pm$
Callageenan 8%	0.020817	0.025166	0.011547	0.020817
Carragoonan 0%	1.363 ±	$1.017 \pm$	$1.030 \pm$	$1.033 \pm$
Carrageenan 9%	0.015275	0.011547	0.020000	0.025166

Table 4.7: Texture profile analysis data of cohesiveness for grass jelly agar by week

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

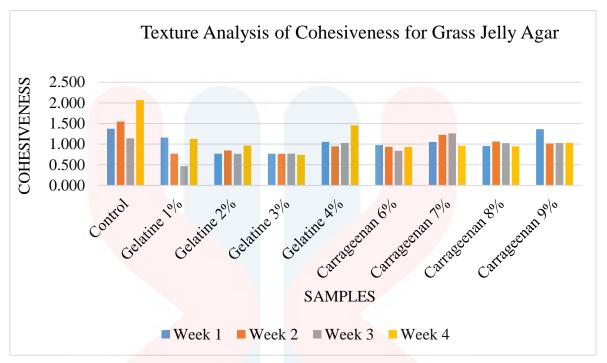


Figure 4.7: Graph of texture profile analysis data of cohesiveness for grass jelly agar by week

From table 4.7, the cohesiveness value of grass jelly agar with addition of carrageenan was higher than addition with gelatine. The highest value of cohesiveness is 2.070 which is indicated to control sample in week 4. Figure 4.7 also show that cohesiveness value of control sample more higher compared to grass jelly agar with addition gelatine and carrageenan. Sample with gelatine 3% show the lowest cohesiveness value.

c) Gumminess

Gumminess represents the energy required to disintegrate a semi-solid food product to a state ready for swallowing (Kreungngern & Chaikham, 2016). Table 4.8 show texture analysis data of gumminess for grass jelly agar by week.

Sampla		Texture analys	s <mark>is (Gum</mark> miness)	
Sample -	Week 1	Week 2	Week 3	Week 4
Control	6539.000 ±	7796.667 ±	6935.000 ±	$6235.000 \pm$
Control	5.567764	3.214550	2.000000	2.645751
Coloting 10/	6180.667 ±	4327.333 ±	$5646.000 \pm$	$5824.667 \pm$
Gelatine 1%	3.055050	2.516611	2.000000	2.516611
Gelatine 2%	4055.667 ±	$4265.667 \pm$	$4043.000 \pm$	$4859.667 \pm$
Gelaune 2%	3.511885	3.214550	2.000000	1.527525
Gelatine 3%	3793.667 ±	3945.333 ±	4035.667 ±	$4233.667 \pm$
Gelaune 5%	1.154701	3.511885	2.516611	1.527525
Gelatin <mark>e 4%</mark>	5266.000 ±	4972.667 ±	5194.667 ±	$5035.667 \pm$
Gelaune 4%	1.000000	3.055050	2.081666	3.214550
Correggeonen 604	$5194.000 \pm$	$4805.000 \pm$	4376.333 ±	$4942.333 \pm$
Carrageenan 6%	2.000000	3.000000	2.516611	2.516611
Correggeonen 70/	5173.333 ±	$5062.333 \pm$	6434.667 ±	$4937.000 \pm$
Carrageenan 7%	1.527525	1.527525	2.516611	2.000000
Company 20/	$5058.333 \pm$	$5612.667 \pm$	5395.000 ±	$5103.667 \pm$
Carrageenan 8%	3.511885	2.081666	2.000000	1.527525
$C_{arrageonan} 00^{\prime}$	$7074.667 \pm$	$6075.000 \pm$	$5210.333 \pm$	$5014.000 \pm$
Carrageenan 9%	1.527525	2.000000	2.516611	2.000000

 Table 4.8: Texture profile analysis data of gumminess for grass jelly agar by week

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

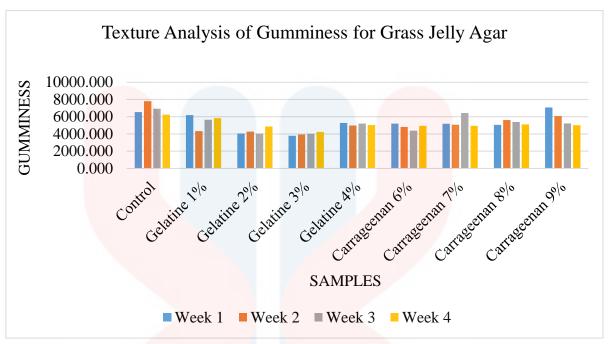


Figure 4.8: Graph of texture profile analysis data of gumminess for grass jelly agar by week

From table 4.8, gumminess value of control sample was higher and only degrade a slightly value from week 1 to week 4. The highest value of gumminess was sample carrageenan 9% which is 7074.667. The sample of grass jelly agar with addition of gelatine3% show the lowest value of gumminess which is in range 3000 to 4000. Overall sample showed slightly degradation of gumminess value from week 1 to week 4.

35

4.3 **Physicochemical Analysis for Grass Jelly Drink**

Physicochemical analysis for grass jelly drink was pH analysis, brix analysis, colour analysis indicates the absorbance value with 309 nm.

4.3.1 pH Analysis for Grass Jelly Drink

Table 4.9	<mark>): pH ana</mark> lysis d	lata	for grass jell	ly c	<mark>lrink by w</mark> eek	
Comple			pН	ana	alysis	
Sample –	Week 1		Week 2		Week 3	Week 4
Control	$7.997 \pm$		$7.263 \pm$		$7.250 \pm$	$6.373 \pm$
Control	0.015275		0.015275		0.017321	0.015275
Gelatine 1%	$6.357 \pm$		$5.537 \pm$		$4.877 \hspace{0.1 in} \pm$	$4.737 \ \pm$
Octaunie 170	0.020817		0.011547		0.015275	0.015275
Gelatine 2%	6.220 ± ±		$4.957 \pm$		4.677 ±	$5.430 \pm$
Ociatilie 270	0.01		0.011547		0.015275	0.01
Gelatine 3%	6.707 ±		$4.837 \pm$		4.543 ±	$4.237 \hspace{.1in} \pm \hspace{.1in}$
Octatille 570	0.005774		0.011547		0.015275	0.015275
Gelatin <mark>e 4%</mark>	$5.740 \pm$		$5.283 \pm$		5.183 ±	$4.800 \ \pm$
Ociatilie 470	0.01		0.005774		0.005774	0.01
Carrageenan 6%	$8.360 \pm$		$7.227 \pm$		5.647 ±	$2.170 \pm$
Carrageenan 0%	0.01		0.025166		0.023094	0.052915
Carrageenan 7%	$8.260 \pm$		$7.147 \pm$		6.050 ±	2.147 ±
Callageenan 770	0.026458		0.025166		0.01	0.015275
Carrageenan 8%	7.820 \pm		5.980 \pm		$4.950 \pm$	2.043 \pm
Callageellall 8%	0.02		0.01		0.01	0.015275
Corregoonen 0%	$6.640 \pm$		6.030 \pm		$5.020 \pm$	$2.343 \pm$
Carrageenan 9%	0.02		0.01		0.01	0.015275
3.6 1 11 11 00	1 0 11 1	. 1	1.00 1		• • • • • • • • • •	11.00

Means in the different column followed the different letters are significantly different (P \leq 0.05). Each data point is the average of three replications (n=3).

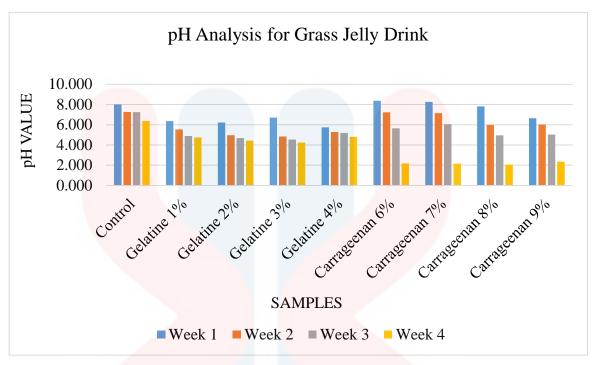


Figure 4.9: Graph of pH analysis data for grass jelly drink by week

Table 4.9 shows the pH analysis data for grass jelly drink by week. Through table 4.9, the pH value for all samples is decreasing by week. Carrageenan 6% for week 1 have the higher pH value compared to others with average pH value 8.360. The lowest pH value is carrageenan 8% in week 4 which is average value 2.043.

Based on figure 4.9, the pH analysis for grass jelly drink with addition gelatine show decreasing from week 6 to 7. But, the trend increasing from week 7 to 8 and decreasing back from week 8 to 9. It is may be because of internal factor that affected the pH value.

Based on figure 4.9, the pH analysis for grass jelly drink with addition carrageenan show decreasing from week 1 to week 4 for each percentage. The pH was in range 8.360 to 2.043. It means that the pH value is from alkaline to acidic and cannot be consume anymore.

4.3.1.1 Effect of Different Concentration of Thickening Agent on pH Value of Grass

Jelly Drink

a) Gelatine

Gelatine with percentage 1 until 4 show unstable reading of pH value.

b) Carrageenan

Carrageenan with percentage 6 until 9 show decreasing pH value. When percentage addition of carrageenan increases, the pH value will be decreases.

4.3.2 Brix Analysis for Grass Jelly Drink

Sampla		Brix a	nalysis	
Sample	Week 1	Week 2	Week 3	Week 4
Control	$10.533 \pm$	9.467 ±	8.533 ±	$7.367 \pm$
Control	0.057735	0.057735	0.057735	0.057735
Gelatine 1%	$9.633 \pm \pm$	9.267 \pm	$8.200 \pm$	$7.533 \pm$
Gelatille 1%	0.057735	0.057735	0.173205	0.11547
Gelatine 2%	9.867 \pm	9.267 \pm	8.233 \pm	7.867 \pm
Gelatille 2%	0.057735	0.057735	0.057735	0.057735
Gelatine 3%	$9.967 \pm$	$9.267 \pm$	$8.200 \pm$	$7.800 \pm$
Gelatille 5%	0.057735	0.057735	0.1	0.1
Gelatine 4%	9.867 \pm	9.267 \pm	$8.433 \pm$	7.067 \pm
Gelatille 470	0.057735	0.11547	<u>0.115</u> 47	0.11547
Carrageenan 6%	$10.567 \pm$	9.467 \pm	$9.000 \pm$	$7.500 \pm$
Callageenan 0%	0.152753	0.152753	0.173205	0.1
Carrageenan 7%	$11.433 \pm$	$10.867 \pm$	$9.600 \pm$	$8.367 \ \pm$
Callageenan 770	0.152753	0.057735	0.1	0.152753
Carrageenan 8%	$11.100 \pm$	$10.700 \pm$	9.033 \pm	$8.833 ~\pm$
Carrageenan 8%	0.1	0.1	0.057735	0.057735
Carragoonan 004	11.233 ±	$10.400 \pm$	9.200 ±	$8.033 \pm$
Carrageenan 9%	0.057735	0.2	0.1	0.057735

Table 4.10: Brix analysis data for grass jelly drink by week

Means in the different column followed the different letters are significantly different ($P \le 0.05$). Each data point is the average of three replications (n=3).

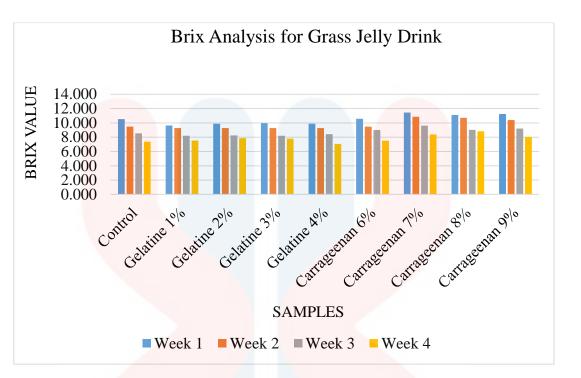


Figure 4.10: Graph of brix analysis data for grass jelly drink by week

Table 4.10 show the brix analysis for grass jelly drink by week. Through table 4.10, the brix analysis for each sample is decreasing from week 1 to week 4. Sample grass jelly drink with carrageenan 7% show the highest brix value which are 11.433, 10.867, 9.600 and 8.367 from week 1, 2, 3 and 4 respectively.

4.3.3 Colour Analysis for Grass Jelly Drink

		week		
Sample	Co	lour analysis (UV	/-Spectrophotome	ter)
Sample	Week 1	Week 2	Week 3	Week 4
Control	$4.413 \pm$	4.037 \pm	4.420 ±	$4.371 \pm$
Control	0.047885	0.007024	0.143615	0.020551
Gelatin <mark>e 1%</mark>	$4.432 \pm$	4.314 ±	4.422 ±	$4.081 \ \pm$
Gelatille 170	0.02203	0.001528	0.03 <mark>0</mark> 089	0.017039
Gelatine 2%	4.146 ±	3.875 ±	2.918 ±	4.431 ± ±
	0.045004	0.057292	0.005292	0.006807
Gelatine 3%	4.346 ±	$3.598 \pm$	2.958 \pm	2.847 \pm
Geratine 370	0.034356	1.15248	0.009452	0.008386
Gelatine 4%	$4.469 \pm$	$4.203 \pm$	4.319 ±	$4.346 \pm$
Genatine 470	0.028042	0.058011	0.07697	0.011136
Carrageenan 6%	3.849 ±	4.360 ±	4. 492 ±	$4.393 \pm$
Carrageonan 070	0.033724	0.023714	0.042595	0.006245
Carrageenan 7%	2.496 ±	$3.065 \pm$	3.717 ±	$3.581 \pm$
Carrageenan 770	0.004359	0.011015	0.080829	0.013
Carrageenan 8%	$2.203 \pm$	2.472 \pm	3.056 ±	4.320 \pm
Carrageenan 670	0.006506	0.032868	0.011719	0.006807
Carrageenan 9%	$2.395 \pm$	$2.862 \pm$	2.565 ±	$3.652 \pm$
	0.001	0.011	0.00611	0.014189

Table 4.11: Colour analysis data of absorbance value at 309 nm for grass jelly drink by

Means in the different column followed the different letters are significantly different ($P \le 0.05$). Each data point is the average of three replications (n=3).

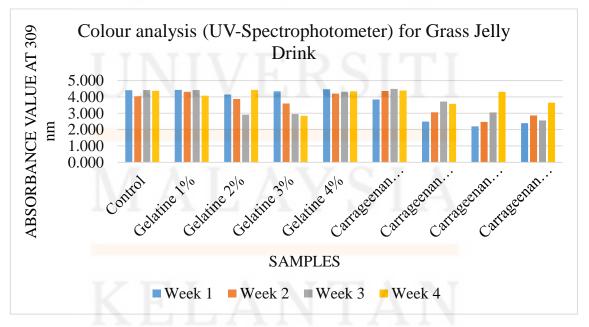


Figure 4.11: Graph of colour analysis data of absorbance value at 309 nm for grass jelly drink by week

Table 4.11 show the colour analysis data of absorbance value at 309 nm for grass jelly drink by week. Grass jelly drink with gelatine 3% show that the absorbance value is decreasing from week 1 to week 4 with value 4.346, 3.598, 2.958 and 2.847. grass jelly drink with carrageenan 8% show that the absorbance value is increasing from week 1 to week 4 with value 2.203, 2.472, 3.056 and 4.320.

4.4 Shelf Life of Grass Jelly

Shelf life of grass jelly was conducted by using spared plate count. The sample of control and one from each type of thickening agent was taken to be evaluate the shelf life. Grass jelly agar from addition thickening agent of gelatine 3% and carrageenan 7% was chosen to proceed with shelf life analysis. The sample was chosen based on the observation of its result from physicochemical analysis in week 1.

4.4.1 Plate Incubate at Temperature 37 ^oC

Week	Samples	Number of Colony Count (cfu/ml)					
		10-1	10-2	10-3	10-4		
1	Control	57	42	25	11		
	Gelatine 3%	NG	NG	NG	NG		
	Carrageenan 7%	NG	NG	NG	NG		
2	Control	103	67	<mark>- 3</mark> 8	39		
	Gelatine 3%	3	NG	NG	NG		
	Carrageenan 7%	27	NG	NG	NG		
3	Control	ТМТС	158	97	74		
	Gelatine 3%	46	17	NG	NG		

Table 4.12: Number of colony count for storage in 37 ^oC

	Carrageenan 7%	91	41	23	NG	
4	Control	TMTC	TMTC	153	110	
	Gelatine 3%	73	58	44	NG	
	Carrageenan 7%	145	86	<mark>5</mark> 9	NG	
5	Control	TMTC	TMTC	TMTC	TMTC	
	Gelatine 3%	154	103	<mark>8</mark> 6	NG	
	Carrageenan 7%	TMTC	128	<mark>9</mark> 2	NG	
6	Control	TMTC	TMTC	TMTC	TMTC	
	Gelatine 3%	TMTC	157	121	12	_
	Carrageenan 7%	TMTC	198	165	31	_
7	Control	TMTC	TMTC	TMTC	TMTC	-
	Gelatine 3%	TMTC	212	187	56	-
	Carrageenan 7%	TMTC	TMTC	204	69	
8	Control	TMTC	TMTC	TMTC	TMTC	
	Gelatine 3%	ТМТС	247	20 5	103	
	Carrageenan 7%	TMTC	TMTC	TMTC	119	1
9	Control	TMTC	TMTC	TMTC	TMTC	1
	Gelatine 3%	ТМТС	TMTC	TMTC	157	1
	Carrageenan 7%	TMTC	TMTC	ТМТС	192	1
10	Control	TMTC	TMTC	TMTC	TMTC	1
	Gelatine 3%	ТМТС	TMTC	ТМТС	TMTC	1
	Carrageenan 7%	TMTC	TMTC	TMTC	TMTC	1

* NG No Growth

***** TMTC To Many To Count (>250)

Table 4.12 show number of colony count for storage in 37 ^oC. The sample control start growing of colony in week 1 while for sample gelatine and carrageenan, the colony start to growth both in week 2. Colony count was TMTC for control sample in week 3 that means the sample cannot be acceptable anymore. Sample grass jelly agar with

addition carrageenan 7% start to TMTC in week 5 while for addition of gelatine 3% in week 6. In conclusion, the shelf life of control sample was the shortest followed by carrageenan and gelatine.

4.4.2 Plate Incubate at Temperature 4 ^oC

Week	Samples		Number of Colo	ony Count (cfu/m	nl)
		10-1	10-2	10-3	10-4
1	Control	NG	NG	NG	NG
	Gelatine 3%	NG	NG	NG	NG
	Carrageenan 7%	NG	NG	NG	NG
2	Control	NG	NG	NG	NG
	Gelatine 3%	NG	NG	NG	NG
	Carrageenan 7%	NG	NG	NG	NG
3	Control	7	NG	NG	NG
	Gelatine 3%	NG	NG	NG	NG
	Carrageenan 7%	NG	NG	NG	NG
4	Control	67	24	NG	NG
	Gelatine 3%	NG	NG	NG	NG
	Carrageenan 7%	14	NG	NG	NG
5	Control	92	53	8	NG
	Gelatine 3%	21	7	NG	NG
	Carrageenan 7%	48	11	NG	NG
6	Control	129	76	21	6
	Gelatine 3%	57	28	NG	NG
	Carrageenan 7%	91	43	9	NG
7	Control	203	125	63	29

Table 4.13: Number of colony count for storage in 4 ⁰C

	Gelatine 3%	106	73	29	NG
	Carrageenan 7%	183	89	42	16
8	Control	TMTC	237	115	62
	Gelatine 3%	183	118	79	38
	Carrageenan 7%	TMTC	123	67	39
9	Control	TMTC	TMTC	TM TC	204
	Gelatine 3%	TMTC	175	132	71
	Carrageenan 7%	TMTC	227	105	74
10	Control	TMTC	ТМТС	TMTC	ТМТС
	Gelatine 3%	TMTC	TMTC	TMTC	ТМТС
	Carrageenan 7%	TMTC	TMTC	ТМТС	ТМТС

✤ NG No Growth

***** TMTC To Many To Count (>250)

Table 4.13 show number of colony count for storage in 4 ^oC. The sample control start growing of colony in week 3 while for sample carrageenan 7% the colony start growth in week 4 and sample gelatine 3% colony start growth in week 5. Colony count was TMTC for control sample in week 8 that means the sample cannot be acceptable anymore. Sample grass jelly agar with addition carrageenan 7% start to TMTC in week 8 while for addition of gelatine 3% in week 9. In conclusion, the shelf life of control sample was the shortest followed by carrageenan and gelatine. Addition of thickening agent contributed to longer shelf life and adorable appearance of grass jelly (Kreungngern & Chaikham, 2016).

In conclusion, shelf life for grass jelly agar in storage 4° C was longer than storage in 37° C. The grass jelly agar made with gelatine had longer shelf life compared to grass jelly agar made with carrageenan. Number of countable colony count is in range 25 - 250 cfu/ml.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

For conclusion, the concentration of thickening agent, gelatine and carrageenan in making grass jelly had been determined which are gelatine (1%, 2%, 3%, 4%) and carrageenan (6%, 7%, 8%, 9%). The percentage chosen based on the observation of texture and appearance. The result show physicochemical properties for grass jelly agar and drink from gelatine and carrageenan. Samples grass jelly agar made with gelatine 3% and carrageenan 7% resulted the best result for physicochemical analysis. Both samples also chosen in evaluating the shelf life. In shelf life determination, the all sample will be longer shelf life when stored in 4C compared to 37C. The control sample had the shortest shelf life followed by carrageenan and gelatine.

5.2 Recommendation

In order to improve the texture and appearance of grass jelly agar, the future study can continue do a new research with using different thickening agent such as xanthan gum. The process throughout preparation of grass jelly also need to be focused more and implement safety and hygienic environment. For recommendations, I suggest that research could be conducted more specific about the ingredients used and processing step in order to produce grass jelly that comply high quality value and longer shelf life. Besides that, food industry also can grab opportunity to produce new formulation of high quality grass jelly with no preservative.

UNIVERSITI MALAYSIA KELANTAN

REFERENCES

- Adams, A. (2015). Fact about grass jelly. Retrieved on March 20, 2017 from Livestrong Foundation website: http://www.livestrong.com/article/503130-fact-about-grassjelly/
- Adebowale, A. L. (2005). Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Journal Food Sci.Technol. Int., 11: 373-382.
- Adeleke, R. O., & Odedeji, J. O. (2010). Functional properties of wheat and sweet potato flour blends. Pakistan Journal of Nutrition, 9(6), 535–538.
- Akesowan, A. (2014). Optimization of textural properties of konjac gels formed with xcarrageenan or xanrhan and xylitol as ingredients in jelly drink processing. Journal of Food Processing and Preservation, 1745–1753. https://doi.org/10.1111/jfpp.12405
- Ar, E. (22 June, 2013). Membuat cincau sendiri di rumah. Retrieved 14 November, 2017, from Dk'wek Blog: http://dkwek.com/2249/membuat-cincau-sendiri-di-rumah/
- Aryal, S. (2015). Nutrient Agar: Composition, Preparation and Uses. Retrieved at 4 April 2018, from Microbiology infohttp://www.microbiologyinfo.com/nutrient-agar-composition preparation-and-uses/
- Asano, K. (2006). Diffusion and mass transfer. Mass Transfer From Fundamentals to Modern Industrial Application (pp. 16-18). Tokyo. Wiley-Vch.
- Azuara, E. C. (1992). Kinetic model for osmotic dehydration and its relationship with Fick's second law. International Journal Food Science Technology, 27, 409–418.
- Bayarri, S., Izquierdo, L., Duran, L. and Costtel, E. (2006). Effect of addition of sucrose and aspartame on the compression resistance of hydrocolloids gels. International Journal Food Science and Technoogy. 41, 980–986.
- Borges, S. V. (2011). Quality evaluation of banana skin extract jellies. Food Science and Technology International, 17:177-183. Bull, K., (1997). Platostoma palustre (Blume) A.J.Paton. The Plant List. 52(2): 281.
- Cacaeo, J.E. and Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds frommilled berries. Journal Food Engineering. 59, 379–389.
- Chaikham, P. and Apichartsrangkoon, A. (2012) Comparison of dynamic viscoelastic and physicochemical properties of pressurised and pasteurised longan juices with xanthan addition. Food Chemistry 134: 2194–2200.
- Chan, C. H. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Journal, 96:1169–1186.
- Choi Y.W. Rogers J.M. (2015). Shelf-Life Assessment of Agar Plates Vacuum-Sealed in Nylon / Polyethylene Packaging Flushed with Nitrogen, 2(7). https://doi.org/10.15406/jmen.2015.02.00075
- Dewanti Widyaningsih, T., Wijayanti, N., Handayani, D., & Prasetyo, G. (2016). Antihypertensive Effects of Black Cincau (Mesona palustris BL) Effervescent Powder and Malondialdehyde Concentration on Wistar Rats as a Hypertensive Model. Research Journal of Life Science, 3(2), 79–85. https://doi.org/10.21776/ub.rjls.2016.003.02.2
- Don, S. (2006). Fruit Jelly: Food processing for entrepreneur series. Food and Nutritional Safety, University of Nebraska-Lincon.
- Feng, T., Gu, Z. B., Jin, Z. Y. (2005) The research advances of the Mesona blume gum. China Food Addit, 6:004

- Franco, D., Pinelo, M., Sineiro, J. and Nunez, M.J. 2007. Processing of Rosa rubiginosa: Extraction of oil and antioxidant substances. BioresourceTechnology. 98, 3506– 3512.
- Karbouj, R. (2007). Aluminium leaching using chelating agents as compositions of food. Food and Chemical Toxicology, 45(9), 1688–1693. https://doi.org/10.1016/j.fct.2007.03.001
- Kreungngern, D., & Chaikham, P. (2016). Rheological, physical and sensory attributes of Chao Kuay jelly added with gelling agents. International Food Research Journal, 23(4), 1474–1478.
- Kreungngern, D., Hale, A. and Rattanapun, B. (2013) Determination ursolic acid and antioxidant in grass jelly (Mesona procumbens Hemsley). Food and Applied Bioscience Journal 1: 90–101
- Lai, L. S., Tung, J. and Lin, P. S. (2000). Solution properties of hsian-tsao (Mesona procumbens Hemsl) leaf gum. Journal of Food Hydrocolloids 14: 287–294.
- Lai, L., Chou, S., & Chao, W. (2001). Studies on the Antioxidative Activities of Hsiantsao (, 963–968.
- Lai, L.S. and Chao, S.J. (2000). A DSC study on the gel-sol transition of a starch and hsian-tsao leaf gum mixed system. Journal of Agricultural and Food Chemistry 48: 3267–3274.
- Lai, L.S. and Chao, S.J. (2000). Effects of salts on the thermal reversibility of starch and hsian-tsao (Mesona procumbens Hemsl) leaf gum mixed system. Journal of Food Science 65: 954–959.
- Lai, L.S. and Lin, P.H. (2004). Applications of decolorized hsian-tsao leaf gum to low-fat salad dressing model emulsions: a rheological study. Journal. Sci. FoodAgric. 84, 1307–1314.
- Lai, L.S., Chou, S.T. and Chao, W.W. (2001) Studies on the antioxidative activities of hsian-tsao (Mesona procumbens Hemsl) leaf gum. Journal of Agricultural and Food Chemistry 49: 963–968.
- Laurent, V. (2013). Health benefit of Cincau. Retrieved on March 25, 2017 from Value Tip to Gain Better Life http://verdilaurent.blogspot.my/2013/12/health-benefits-of-cincau.html
- Laurent, V. (2013). Health benefit of Cincau. Retrieved on March 4, 2018 from Value Tip to Gain Better Life http://verdilaurent.blogspot.my/2013/12/health-benefitsof-cincau.html
- Liu, H., Yu, L., Xie, F., & Chen, L. (2006). Gelatinization of cornstarch with different amylose / amylopectin content. Carbohydrate Polymers, 65, 357–363. https://doi.org/10.1016/j.carbpol.2006.01.026
- Moubarik, A., Mansouri, H. R., Pizzi, A., Allal, A., Charrier, F., Badia, M. A., & Charrier, B. (2013). Evaluation of mechanical and physical properties of industrial particleboard bonded with a corn flour-urea formaldehyde adhesive. Composites Part B: Engineering, 44(1), 48–51. https://doi.org/10.1016/j.compositesb.2012.07.041
- Mudaliar, A. (2014). How to make grass jelly from starch. Retrieved March 28, 2017, from Buzzle website http://www.buzzle.com/articles/how-to-make-grass-jelly-from-scratch-.html
- Noda, T., Furuta, S., & Suda, I. (2001). Sweet potato β-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose. Carbohydrate Polymers, 44(3), 189–195. https://doi.org/10.1016/S0144-8617(00)00226-5

- Norhidayah Amin, S. A. (2009). Quality and nutritional properties of Lansium Domesticum Corr Jam. Institude of Research, Development and Commercialization, Universiti Teknologi Mara.
- Offeman, R. D., Dao, G. T., Holtman, K. M., & Orts, W. J. (2015). Leaching behavior of water-soluble carbohydrates from almond hulls. Industrial Crops and Products, 65, 488–495. https://doi.org/10.1016/j.indcrop.2014.10.036
- Phet, K., & Si, P. (2016). Rheological, physical and sensory attributes of Chao Kuay jelly added with gelling agents. International Food Research Journal, 23(4), 1474– 1478.
- Quigley, J. D., Lago, A., Chapman, C., Erickson, P., & Polo, J. (2013). Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science, 96(2), 1148–1155. https://doi.org/10.3168/jds.2012-5823
- Ramesh Yadav, A., Guha, M., Tharanathan, R. N., & Ramteke, R. S. (2006). Changes in characteristics of sweet potato flour prepared by different drying techniques. LWT - Food Science and Technology, 39(1), 20–26. https://doi.org/10.1016/j.lwt.2004.12.010
- Richin (2017). Nutritional information, diet info and calories in grass jelly. Retrieved March 20,2017 from Fitbit website: http://www.fibrit.com/foods/-Grass+Jelly/692781835
- Ross-Murphy, S. B. (1992). Structure and rheology of gelatin gels: recent progress. Polymer, 33(12), 2622–2627. https://doi.org/10.1016/0032-3861(92)91146-S
- Saif, W. (2013). Cara membuat cincau hitam. Retrieved 17 November, 2017, from Resep national: http://www.resepnasional.com/cara-membuat-cincau-hitam/
- Sasmita, A. O., & Ling, A. P. K. (2017). Bioactivity of Mesona palustris (Black Cincau) as a Nutraceutical Agent. Journal of Engineering and Science Research, 1(2), 47– 53. https://doi.org/10.26666/rmp.jesr.2017.2.9
- Schaller, C. P. (2016). Collisions and Phase. Saint John's University.
- Septian, B. A., & Widyaningsih, T. D. (2014). The role of black jelly grass drinks (Mesona palustris Bl.) for high blood pressure reduction: A review. Jurnal Pangan Dan Agroindustri, 2(3), 198–202. Takur, A. (2011). Principle, working and application of UV spectroscopy. Retrieved Disember 2,2017 from India Study Channel website at http://www.indiastudychannel.com/resources/146681-Principle-working-and-applications-of-UV-spectroscopy.aspx
- Sigel, H., Zuberbühler, A. D., & Yamauchi, O. (1991). Comments on potentiometric pH titrations and the relationship between pH-meter reading and hydrogen ion concentration. Analytica Chimica Acta, 255(1), 63–72. https://doi.org/10.1016/0003-2670(91)85088-A
- Tao, F. B. (2008). Isolation and characterization of an acidic polysaccharide from Mesona blumes gum. Carbohydr.Polym., 71, 159–169.
- Van De Velde, F., Lourenço, N. D., Pinheiro, H. M., & Bakker, M. (2002). Carrageenan: A Food-Grade and Biocompatible Support for Immobilisation Techniques. Advanced Synthesis and Catalysis, 344(8), 815–835. https://doi.org/10.1002/1615-4169(200209)344:8<815::AID-ADSC815>3.0.CO;2-H
- Waterman, K.C. and Sutton, S.C. (2003) A computational model for particle size influence on drug absorption during controlled-release colonic delivery. J.Control.Release 86, 293–304.
- Widyaningsih, T. D., Mahar, J., Wijayanti, N., & Najmuddin, M. (2013). Immunomodulatory effect of instant tea powder from Back cincau (Mesona

palustris BL) in the treatment of Salmonella typhimurium induced infection in balb mice. Food and Public Health, 3(3), 142–146. https://doi.org/10.5923/j.fph.20130303.05

- Widyaningsih, T.D., Zumroh, I.Z. and Rochmawati, N. (2014) Effect of mixed grass jelly (Mesona palustris BL) and other ingredients effervescent powder in diabetic rats. International Journal of Technical Research and Applications 2: 52–55.
- Yang, C.C. and Huang, S.H. (1990). The gel-forming properties and chemical compositions of the gum extract from leaf, stem and root of the hsian-tsao herb (Mesona procumbens Hemsl). Food Science 17: 260–265.
- Yen, G.C. and Hung, C.Y. (2000) Effects of alkaline and heat treatment on antioxidative activity and total phenolics of extracts from hsian-tsao (Mesona procumbens Hemsl.). Food Research International 33: 487–492.
- Yen, G.C. and Hung, C.Y. (2000). Effects of alkaline and heat treatment on antioxidative activity and total phenolics of extracts from hsian-tsao (Mesona procumbens Hemsl.). Food Research International 33: 487–492
- Yuris, A., Goh, K. K. T., Hardacre, A. K., & Matia-Merino, L. (2017). Understanding the interaction between wheat starch and Mesona chinensis polysaccharide.
 LWT Food Science and Technology, 84, 212–221. https://doi.org/10.1016/j.lwt.2017.05.066
- Yurvey, V. P. (2004). Structural parameters of amylopectin clusters and semi crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research, 339, 2683-2691.

APPENDIX A

Table A.1 Two Way ANOVA for pH and brix analysis of grass jelly agar

Tukey HSD							
			Mean Difference (I-			95% Confide	ence Interval
Dependent Variable	(I) Week	(J) Week	J)	Std. Error	Sig.	Lower Bound	Upper Bound
pН	WEEK 1	WEEK 2	.0811	.00423	.000	.0700	.0922
		WEEK 3	.1674	.00423	.000	.1563	.1785
		WEEK 4	.2811	.00423	.000	.2700	.2922
	WEEK 2	WEEK 1	0811	.00423	.000	0922	0700
		WEEK 3	.0863	.00423	.000	.0752	.0974
		WEEK 4	.2000	.00423	.000	.1889	.2111
	WEEK 3	WEEK 1	1674	.00423	.000	1785	1563
		WEEK 2	0863	.00423	.000	0974	0752
		WEEK 4	.1137	.00423	.000	.1026	.1248
	WEEK 4	WEEK 1	2811	.00423	.000	2922	2700
		WEEK 2	2000	.00423	.000	2111	1889
		WEEK 3	1137	.00423	.000	1248	1026
Brix	WEEK 1	WEEK 2	.4296	.02808	.000	.3558	.5035
		WEEK 3	.8185	.02808	.000	.7447	.8924
		WEEK 4	1.5333	.02808	.000	1.4595	1.6072
	WEEK 2	WEEK 1	4296	.02808	.000	5035	3558
		WEEK 3	.3889	.02808	.000	.3150	.4628
		WEEK 4	1.1037	.02808	.000	1.0298	1.1776
	WEEK 3	WEEK 1	8185	.02808	.000	8924	7447
		WEEK 2	3889	.02808	.000	4628	3150
		WEEK 4	.7148	.02808	.000	.6410	.7887
	WEEK 4	WEEK 1	-1.5333	.02808	.000	-1.6072	-1.4595
		WEEK 2	-1.1037	.02808	.000	-1.1776	-1.0298
		WEEK 3	7148	.02808	.000	7887	6410

Multiple Comparisons

Based on observed means.

The error term is Mean Square(Error) = .011.

*. The mean difference is significant at the .05 level.

Table A.2 Post Hoc Tests (Tukey) for pH of grass jelly agar

pН

						Subset				
Sample	Ν	1	2	3	4	5	6	7	8	9
GELATIN 4%	12	8.1100								
GELATINE 3%	12		8.4233							
GELATINE 2%	12			8.5533						
GELATINE 1%	12				8.6792					
CONTROL	12					8. <mark>7175</mark>				
CARRAGEENAN 6%	12						8.8900			
CARRAGEENAN 8%	12							8.9483		
CARRAGEENAN 9 <mark>%</mark>	12								8.9842	
CARRAGEENAN 7%	12									9.2658
Sig.		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Means for groups in homogeneous subsets are displayed. Based on observed means.

The error term is Mean Square(Error) = .000.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Table A.3 Post Hoc Tests (Tukey) for brix of grass jelly agar

Brix

Tukey HSD^{a,b,c}

			Subset					
Sample	Ν	1	2	3	4	5	6	7
CONTROL	12	2.9833						
GELATINE 1%	12		4.4417					
GELATINE 2%	12			6.4667				
CARRAGEENAN 6%	12				7.0333			
GELATIN 4%	12	1×7		DC	TTT	7.3167		
CARRAGEENAN 8%	12		P. P	$\langle \neg \rangle$		7.3667		
GELATINE 3%	12	. V.	1.1.1	10		7.4000		
CARRAGEENAN 9%	12						7.8250	
CARRAGEENAN 7%	12							9.6750
Sig.		1.000	1.000	1.000	1.000	.563	1.000	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .011.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Table A.4 Two Way ANOVA for colour analysis of grass jelly agar

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confide	ence Interval
Dependent Variable	(I) WEEK	(J) WEEK	J)	Std. Error	Sig.	Lower Bound	Upper Bound
LIGHTNESS	WEEK 1	WEEK 2	3.3830	.08524	.000	3.1588	3.6072
		WEEK 3	.0078	.08524	1.000	2164	.2320
		WEEK 4	.8815	.08524	.000	.6573	1.1057
	WEEK 2	WEEK 1	-3.3830	.08524	.000	-3.6072	-3.1588
		WEEK 3	-3.3752	.08524	.000	-3.5994	-3.1510
		WEEK 4	-2.5015	.08524	.000	-2.7257	-2.2773
	WEEK 3	WEEK 1	0078	.08524	1.000	2320	.2164
		WEEK 2	3.37 <mark>52</mark> *	.08524	.000	3.1510	3.5994
		WEEK 4	.8737	.08524	.000	.6495	1.0979
	WEEK 4	WEEK 1	8815	.08524	.000	-1.1057	6573
		WEEK 2	2.5015	.08524	.000	2.2773	2.7257
		WEEK 3	8737	.08524	.000	-1.0979	6495
REDNESS	WEEK 1	WEEK 2	2.6141	.07961	.000	2.4047	2.8234
		WEEK 3	.6363	.07961	.000	.4269	.8457
		WEEK 4	1.0096	.07961	.000	.8003	1.2190
	WEEK 2	WEEK 1	-2.6141	.07 <mark>961</mark>	.000	-2.8234	-2.4047
		WEEK 3	-1.9778	.079 <mark>61</mark>	.000	-2.1871	-1.7684
		WEEK 4	-1.6044	.07961	.000	-1.8138	-1.3951
	WEEK 3	WEEK 1	6363	.07961	.000	8457	4269
		WEEK 2	1.9778	.07961	.000	1.7684	2.1871
		WEEK 4	.3733	.07961	.000	.1640	.5827
	WEEK 4	WEEK 1	-1.0096	.07961	.000	-1.2190	8003
		WEEK 2	1.6044	.07961	.000	1.3951	1.8138
		WEEK 3	3733	.07961	.000	5827	1640
YELLOWNEES	WEEK 1	WEEK 2	7.2830	.13152	.000	6.9371	7.6289
		WEEK 3	.5289	.13152	.001	.1830	.8748
		WEEK 4	.9637	.13152	.000	.6178	1.3096
	WEEK 2	WEEK 1	-7.2830	.13152	.000	-7.6289	-6.9371
U U		WEEK 3	-6.7541	.13152	.000	-7.1000	-6.4082
		WEEK 4	-6.3193	.13152	.000	-6.6652	-5.9734
	WEEK 3	WEEK 1	5289	.13152	.001	8748	1830
		WEEK 2	6.7541	.13152	.000	6.4082	7.1000
		WEEK 4	.4348	.13152	.008	.0889	.7807
	WEEK 4	WEEK 1	9637	.13152	.000	-1.3096	6178
		WEEK 2	6.3193	.13152	.000	5.9734	6.6652
	A 4 .	WEEK 3	4348	.13152	.008	7807	0889

Based on observed means.

The error term is Mean Square(Error) = .234.

*. The mean difference is significant at the .05 level.

Table A.5 Post Hoc Tests (Tukey) for L* value of grass jelly agar

LIGHTNESS

			Subset					
SAMPLE	N	1	2	3	4	5	6	7
GELATINE 3%	12	18.6058						
CONTROL	12		20.3200					
GELATINE 4%	12			21.2692				
CARRAGEENAN 7%	12			21.4225				
GELATINE 1%	12			21.5000				
GELATINE 2%	12				22.3950			
CARRAGEENAN 6%	12					23.4533		
CARRAGEENAN 8%	12						27.3008	
CARRAGEENAN 9%	12							27.8008
Sig.		1.000	1.000	.679	1.000	1.000	1.000	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .098.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Table A.6 Post Hoc Tests (Tukey) for a* value of grass jelly agar

REDNESS

Tukey HSD^{a,b,c}

				Subset		
SAMPLE	_ N _	1	2	3	4	5
GELATINE 3%	12	3.2825	22			
CONTROL	12	3.5308	1.1.	21.1		
GELATINE 2%	12		5.0108			
GELATIN <mark>E 4%</mark>	12		5.0558			
CARRAGEENAN 7%	12			5.5458		
GELATINE 1%	12		870	5.9250	1.	
CARRAGEENAN 6%	12				6.3117	
CARRAGEENAN 8%	12		- H K		. h.	8.3400
CARRAGEENAN 9%	12					8.6558
Sig.		.495	1.000	.053	1.000	.187

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .086.

a. Uses Harmonic Mean Sample Size = 12.000.

c. Alpha = .05.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Table A.7 Post Hoc Tests (Tukey) for b* value of grass jelly agar

YELLOWNEES

Tukey	HSD ^{a,b,c}
-------	----------------------

		Subset							
SAMPLE	N	1	2	3	4	5	6		
CONTROL	12	9.0867							
GELATINE 3 <mark>%</mark>	12	9.5108							
CARRAGEENAN 7%	12		11.9117						
GELATINE 2 <mark>%</mark>	12		12.2617	12. <mark>2617</mark>					
GELATINE 1%	12		12.5267	12.5267					
GELATINE 4%	12			12.6392					
CARRAGEENAN 6%	12				13.5275				
CARRAGEENAN 8%	12					16.1775			
CARRAGEENAN 9%	12						18.8167		
Sig.		.449	.062	.607	1.000	1.000	1.000		

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .234.

- a. Uses Harmonic Mean Sample Size = 12.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = <mark>.05.</mark>

MALAYSIA

KELANTAN

			Multiple Compa	arisons			
Tukey HSD			Mean			95% Confide	ence Interval
Dependent Variable	(I) WEEK	(J) WEEK	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Boun
HARDNESS	WEEK 1	WEEK 2	-33.4815	.55556	.000	-34.9426	-32.020
		WEEK 3	-108.0741	.55556	.000	-109.5352	-106.612
		WEEK 4	-77.8148	.55556	.000	-79.2760	-76.353
	WEEK 2	WEEK 1	33.4815	.55556	.000	32.0203	34.942
		WEEK 3	-74.5926	.55556	.000	-76.0537	-73.131
		WEEK 4	-44.3333	.55556	.000	-45.7945	-42.872
	WEEK 3	WEEK 1	108.0741	.55556	.000	106.6129	109.535
		WEEK 2	74.5926	.55556	.000	73.1314	76.053
		WEEK 4	30.2593	.55556	.000	28.7981	31.720
	WEEK 4	WEEK 1	77.8148	.55556	.000	76.3537	79.276
		WEEK 2	44.3333	.55556	.000	42.8722	45.794
		WEEK 3	-30.2593	.55556	.000	-31.7204	-28.798
COHESIVENESS	WEEK 1	WEEK 2	.0396	.01152	.005	.0093	.069
		WEEK 3	.1285	.01152	.000	.0982	.158
		WEEK 4	0852	.01152	.000	1155	054
	WEEK 2	WEEK 1	0396	.01152	.005	0699	00
		WEEK 3	.0889	.01152	.000	.0586	.119
		WEEK 4	1248	.01152	.000	1551	094
	WEEK 3	WEEK 1	1285	.01152	.000	1588	098
		WEEK 2	0889	.01152	.000	1192	058
		WEEK 4	2137	.01152	.000	2440	18:
	WEEK 4	WEEK 1	.0852	.01152	.000	.0549	.11
		WEEK 2	.1248	.01152	.000	.0945	.15
		WEEK 3	.2137	.01152	.000	.1834	.244
GUMMINES	WEEK 1	WEEK 2	163.6296	.69537	.000	161.8008	165.458
		WEEK 3	118.2963	.69537	.000	116.4674	120.12
		WEEK 4	238.8519	.69537	.000	237.0230	240.680
	WEEK 2	WEEK 1	-163.6296	.69537	.000	-165.4585	-161.800
		WEEK 3	-45.3333*	.69537	.000	-47.1622	-43.504
		WEEK 4	75.2222	.69537	.000	73.3934	77.05
	WEEK 3	WEEK 1	-118.2963	.69537	.000	-120.1252	-116.467
		WEEK 2	45.3333	.69537	.000	43.5045	47.162
		WEEK 4	120.5556	.69537	.000	118.7267	122.384
	WEEK 4	WEEK 1	-238.8519	.69537	.000	-240.6807	-237.023
		WEEK 2	-75.2222*	.69537	.000	-77.0511	-73.393
		WEEK 3	-120.5556	.69537	.000	-122.3844	-118.726

Table A.8 Two Way ANOVA for texture analysis of grass jelly agar

Based on observed means.

The error term is Mean Square(Error) = 6.528.

*. The mean difference is significant at the .05 level.

Table A.9 Post Hoc Tests (Tukey) for hardness value of grass jelly agar

				HARDNES	s				
Tukey HSD ^{a,b,c}									
					Sub	set			
SAMPLE	N	1	2	3	4	5	6	7	8
GELATINE 3%	12	<mark>5</mark> 091.4167							
GELATINE 2%	12		5099.0833						
GELATINE 4%	12			5130.7500					
CARRAGEENAN 7%	12				5143.0000				
CARRAGEENAN 9%	12					5161.2500			
CARRAGEENAN 8%	12						5241.5833		
CARRAGEENAN 6%	12						5243.3333		
GELATINE 1%	12							5316.1667	
CONTROL	12								5663.3333
Sig.		1.000	1.000	1.000	1.000	1.000	.482	1.000	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 4.167.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The h<mark>armonic mean of th</mark>e grou<mark>p sizes is used. Typ</mark>e I error levels are not guaranteed.

c. Alpha = .05.

Table A.10 Post Hoc Tests (Tukey) for cohesiveness value of grass jelly agar

COHESIVENESS

Tukey HSD^{a,b,c}

		Subset							
SAMPLE	N	1	2	3	4	5	6		
GELATINE 3%	12	.7592							
GELATINE 2%	12		.8358						
GELATINE 1%	12		.8808	.8808					
CARRAGEENAN 6%	12			.9217					
CARRAGEENAN 8%	12	VT	D	CT'	.9975				
CARRAGEENAN 9%	12	V				1.1108			
GELATINE 4%	12			~ ~		1.1225			
CARRAGEENAN 7%	12					1.1250			
CONTROL	12						1.5333		
Sig.	100	1.000	.204	.320	1.000	.996	1.000		

Means for groups in homogeneous subsets are displayed. Based on observed means.

The error term is Mean Square(Error) = .002.

a. Uses Harmonic Mean Sample Size = 12.000.

- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Table A.11 Post Hoc Tests (Tukey) for gumminess value of grass jelly agar

				GL	JMMINES					
Tukey HSD ^{a,b,c}										
						Subset				
SAMPLE	N	1	2	3	4	5	6	7	8	9
GELATINE 3%	12	4002.0833								
GELATINE 2%	12		4306.0000							
CARRAGEENAN 6%	12			4829.4167						
GELATINE 4%	12				5117.2500					
CARRAGEENAN 8%	12					5292.4 <mark>167</mark>				
CARRAGEENAN 7%	12						5401.8333			
GELATINE 1%	12							5494.6667		
CARRAGEENAN 9%	12								5843.5000	
CONTROL	12									6876.4167
Sig.		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 6.528.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

MALAYSIA

KELANTAN

Multiple Comparisons

			Mean Difference (I-			95% Confide	ence Interval
Dependent Variable	(I) WEEK	(J) WEEK	J)	Std. Error	Sig.	Lower Bound	Upper Bound
pH	WEEK 1	WEEK 2	1.0933	.00474	.000	1.0809	1.1058
		WEEK 3	1.7670	.00474	.000	1.7546	1.7795
		WEEK 4	3.4244	.00474	.000	3.4120	3.4369
	WEEK 2	WEEK 1	-1.0933	.00474	.000	-1.1058	-1.0809
		WEEK 3	.6737*	.00474	.000	.6612	.6862
		WEEK 4	2.3311	.00474	.000	2.3187	2.3436
	WEEK 3	WEEK 1	-1.7670	.00474	.000	-1.7795	-1.7546
		WEEK 2	67 <mark>37</mark> *	.00474	.000	6862	6612
		WEEK 4	1.6574	.00474	.000	1.6450	1.6699
	WEEK 4	WEEK 1	-3.4244	.00474	.000	-3.4369	-3.4120
		WEEK 2	-2.3311	.00474	.000	-2.3436	-2.3187
		WEEK 3	-1.6574	.00474	.000	-1.6699	-1.6450
BRIX	WEEK 1	WEEK 2	.6926	.02784	.000	.6194	.7658
		WEEK 3	1.7519	.02784	.000	1.6786	1.8251
		WEEK 4	2.6481	.02784	.000	2.5749	2.7214
	WEEK 2	WEEK 1	6926	.02784	.000	7658	6194
		WEEK 3	1.0593	.02784	.000	.9860	1.1325
		WEEK 4	1.9556	.02784	.000	1.8823	2.0288
	WEEK 3	WEEK 1	-1.7519	.02784	.000	-1.8251	-1.6786
		WEEK 2	-1.0593	.02784	.000	-1.1325	9860
		WEEK 4	.8963	.02784	.000	.8231	.9695
	WEEK 4	WEEK 1	-2.6481	.02784	.000	-2.7214	-2.5749
		WEEK 2	-1.9556	.02784	.000	-2.0288	-1.8823
		WEEK 3	8963	.02784	.000	9695	8231
COLOUR	WEEK 1	WEEK 2	0041	.05387	1.000	1458	.1376
		WEEK 3	0228	.05387	.974	1645	.1189
		WEEK 4	3634	.05387	.000	5051	2217
	WEEK 2	WEEK 1	.0041	.05387	1.000	1376	.1458
		WEEK 3	0187	.05387	.986	1604	.1230
		WEEK 4	3593	.05387	.000	5010	2176
	WEEK 3	WEEK 1	.0228	.05387	.974	1189	.1645
		WEEK 2	.0187	.05387	.986	1230	.1604
		WEEK 4	3406	.05387	.000	4823	1989
1	WEEK 4	WEEK 1	.3634	.05387	.000	.2217	.5051
		WEEK 2	.3593	.05387	.000	.2176	.5010
1.1	1.7.	WEEK 3	.3406	.05387	.000	.1989	.4823

Based on observed means.

Tukey HSD

The error term is Mean Square(Error) = .039.

*. The mean difference is significant at the .05 level.

Table A.13 Post Hoc Tests (Tukey) for pH value of grass jelly drink

pН

Tukey HSD ^{a,b,c}											
			Subset								
SAMPLE	Ν	1	2	3	4	5	6	7	8		
CARRAGEENAN 9%	12	5.0083									
GELATINE 2%	12		5.0708								
GELATINE 3%	12		5.0808								
CARRAGEENA <mark>N 8%</mark>	12			5.1983							
GELATINE 4%	12				5.2517						
GELATINE 1%	12					5.3767					
CARRAGEENAN 6%	12						5.8508				
CARRAGEENAN 7%	12							5.9008			
CONTROL	12								7.2208		
Sig.		1.000	.891	1.000	1.000	1.000	1.000	1.000	1.000		

Means for groups in homogen<mark>eous subsets are disp</mark>layed.

Based on observed means. The error term is Mean Square(Error) = .000.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Table A.14 Post Hoc Tests (Tukey) for brix value of grass jelly drink

BRIX

Tukey HSD^{a,b,c}

			Subset							
SAMPLE	Ν	1	2	3	4	5	6	7		
GELATINE 1%	12	8.6583								
GELATINE 4%	12	8.6583								
GELATINE 3%	12		8.8083		1.000	1.11				
GELATINE 2%	12		8.8083	\sim						
CONTROL	12	. V		8.9750	1 1	1				
CARRAGEENAN 6%	12				9.1333					
CARRAGEENAN 9%	12					9.7167				
CARRAGEENAN 8%	12						9.9167			
CARRAGEENAN 7%	12	-			-			10.0667		
Sig.	- A	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .010.

- a. Uses Harmonic Mean Sample Size = 12.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Table A.15 Post Hoc Tests (Tukey) for colour value of grass jelly drink

COLOUR

Tukey HSD^{a,b,c}

		Subset						
SAMPLE	N	1	2	3	4	5		
CARRAG <mark>EENAN 9%</mark>	12	2.8683						
CARRAG <mark>EENAN 8%</mark>	12	3.0128	3.0128					
CARRAG <mark>EENAN 7%</mark>	12		3.2373	3. <mark>2373</mark>				
GELATIN <mark>E 3%</mark>	12			3.4376				
GELATINE 2%	12				3.8426			
CARRAGEENAN 6%	12					4.2736		
CONTROL	12					4.3099		
GELATINE 1%	12					4.3123		
GELATINE 4%	12					4.3343		
Sig.		.690	.140	.259	1.000	.998		

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .039.

- a. Uses Harmonic Mean Sample Size = 12.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alph<mark>a = .05.</mark>

UNIVERSIII

APPENDIX B

To count the colony forming units (CFU)

By using this formula:

× dilution factor

$$CFU = \frac{number \ of \ colony}{volume \ plated} \times dilution \ facto$$

CFU for no dilution

Colonies per plate: 200

Volume dilution added to plate: 1 Ml

 $CFU = \frac{200}{1 Ml}$

=2000 cells/ 1 Ml

=2000 CFUs/ M1

 $=2 \times 10^3$ CFUs/ Ml

CFU for dilution factor 10^{-2} Colonies per plate: 80 Dilution factor: $1:1 \times 10^{3}$ Volume dilution added to plate: 1 Ml $CFU = \frac{80}{1 Ml} \times 1000$ =80000 cells/ 1Ml

=80000 CFUs/ Ml

 $=8 \times 10^4 \ CFUs / Ml$

APPENDIX C

Images of grass jelly agar

FIGURE C.1 CONTROL

FIGURE C.2 GELATINE 1%

FIGURE C.3 GELATINE 2%

FIGURE C.4 GELATINE 3%

FIGURE C.5 GELATINE 4%

FIGURE C.6 CARRAGEENAN 6%

FIGURE C.7 CARRAGEENAN 7% F

FIGURE C.8 CARRAGEENAN 8% FIGURE C.9 CARRAGEENAN 9%